Hiroyuki Shinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6457679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liquid Drops on Homogeneous and Chemically Heterogeneous Surfaces:Â A Two-Dimensional Lattice Boltzmann Study. Langmuir, 2003, 19, 9086-9093.	3.5	61
2	Effects of cleaning procedures of silica wafers on their friction characteristics. Journal of Colloid and Interface Science, 2006, 299, 233-237.	9.4	52
3	Molecular Dynamics Simulations of Water at NaCl(001) and NaCl(011) Surfaces. Journal of Physical Chemistry B, 1998, 102, 1974-1981.	2.6	51
4	Evaluation of Interaction Forces between Macroparticles in Simple Fluids by Molecular Dynamics Simulation. Journal of Colloid and Interface Science, 1999, 209, 79-85.	9.4	50
5	Langevin Dynamics Simulations of Cationic Surfactants in Aqueous Solutions Using Potentials of Mean Force. Langmuir, 2004, 20, 2017-2025.	3.5	35
6	Interaction Forces between Colloidal Particles in Alcoholâ `Water Mixtures Evaluated by Simple Model Simulations. Langmuir, 2000, 16, 3361-3371.	3.5	31
7	Wetting-induced interaction between rigid nanoparticle and plate: A Monte Carlo study. Journal of Chemical Physics, 2002, 116, 9500-9509.	3.0	31
8	Lattice-Boltzmann flow simulation of an oil-in-water emulsion through a coalescing filter: Effects of filter structure. Chemical Engineering Science, 2018, 177, 210-217.	3.8	31
9	Computer simulation of wetting, capillary forces, and particle-stabilized emulsions: From molecular-scale to mesoscale modeling. Advanced Powder Technology, 2012, 23, 538-547.	4.1	30
10	Molecular Dynamics Simulations of Surfactant Aggregation on Hydrophilic Walls in Micellar Solutions. Langmuir, 1999, 15, 578-586.	3.5	29
11	A Reexamination of Mean Force Potentials for the Methane Pair and the Constituent Ion Pairs of NaCl in Water Journal of Chemical Engineering of Japan, 2003, 36, 57-65.	0.6	29
12	Gadolinium-loaded chitosan nanoparticles for neutron-capture therapy: Influence of micrometric properties of the nanoparticles on tumor-killing effect. Applied Radiation and Isotopes, 2014, 88, 109-113.	1.5	25
13	Adhesion of melanoma cells to the surfaces of microspheres studied by atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2012, 91, 114-121.	5.0	24
14	Cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages. Advanced Powder Technology, 2014, 25, 1872-1881.	4.1	23
15	Lateral Capillary Forces between Solid Bodies on Liquid Surface:Â A Lattice Boltzmann Study. Langmuir, 2006, 22, 2058-2064.	3.5	22
16	Effect of interfacial serum proteins on melanoma cell adhesion to biodegradable poly(l-lactic acid) microspheres coated with hydroxyapatite. Colloids and Surfaces B: Biointerfaces, 2013, 108, 8-15.	5.0	21
17	Effect of internal mass in the lattice Boltzmann simulation of moving solid bodies by the smoothed-profile method. Physical Review E, 2017, 95, 043309.	2.1	21
18	Free Energy Profiles for Na+ and Cl- Adsorption onto Water/NaCl Crystal Interfaces Evaluated by Molecular Dynamics Simulation Journal of Chemical Engineering of Japan, 1998, 31, 771-779.	0.6	19

Ηιγογικι Shinto

#	Article	IF	CITATIONS
19	Specific Effects of Divalent Cation Nitrates on the Nanotribology of Silica Surfaces. Industrial & Engineering Chemistry Research, 2006, 45, 7035-7041.	3.7	19
20	Acoustic pressure pulses from laser-irradiated suspensions containing gold nanospheres in water: Experimental and theoretical study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 430, 51-57.	4.7	16
21	Size-dependent effect of gold nanospheres on the acoustic pressure pulses from laser-irradiated suspensions. Advanced Powder Technology, 2014, 25, 733-738.	4.1	16
22	Revised Implicit Solvent Model for the Simulation of Surfactants in Aqueous Solutions. Journal of Physical Chemistry B, 2005, 109, 11762-11769.	2.6	13
23	Implicit Solvent Model Simulations of Surfactant Self-Assembly in Aqueous Solutions. Journal of Physical Chemistry B, 2010, 114, 6337-6343.	2.6	13
24	Lattice Boltzmann study of capillary forces between cylindrical particles. Advanced Powder Technology, 2007, 18, 643-662.	4.1	12
25	Effects of physicochemical properties of particles and medium on acoustic pressure pulses from laser-irradiated suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 42-48.	4.7	12
26	A Reexamination of Mean Force Potentials for the Constituent Ion Pairs of Tetramethylammonium Chloride in Water. Journal of Chemical Engineering of Japan, 2004, 37, 1345-1356.	0.6	11
27	Interaction Forces between Nanoparticles in Diolâ^Water Mixtures:Â A Molecular Dynamics Study with Coarse-Grained Model. Langmuir, 2002, 18, 4171-4178.	3.5	10
28	Revised Implicit Solvent Model for the Simulation of Surfactants in Aqueous Solutions. 2. Modeling of Charged Headgroups at Oilâ^'Water Interface. Journal of Chemical Theory and Computation, 2007, 3, 1163-1171.	5.3	10
29	Effect of interfacial serum proteins on the cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages. Colloids and Surfaces B: Biointerfaces, 2019, 181, 270-277.	5.0	10
30	Lattice Boltzmann method for simulation of wettable particles at a fluid-fluid interface under gravity. Physical Review E, 2020, 101, 033304.	2.1	9
31	Adhesion of melanoma cells to the microsphere surface is reduced by exposure to nanoparticles. Advanced Powder Technology, 2012, 23, 693-699.	4.1	8
32	Potentials of Mean Force for Hydrophilic-Hydrophobic Solute Pairs in Water. Journal of Chemical Engineering of Japan, 2005, 38, 465-477.	0.6	7
33	Capillary Forces between Planar Anchoring Surfaces in the Isotropic Phase of a Nematic Liquid Crystal. Chemistry Letters, 2005, 34, 1318-1319.	1.3	6
34	Effect of exposure temperature on the cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, and malignant melanocytes. Advanced Powder Technology, 2020, 31, 835-842.	4.1	6
35	Fragile structured layers on surfaces detected by dynamic atomic force microscopy in aqueous electrolyte solutions. Advanced Powder Technology, 2005, 16, 213-229.	4.1	5
36	Interactions between colloidal particles in NaCl aqueous solutions: molecular dynamics simulations with an implicit solvent model. Advanced Powder Technology, 2005, 16, 473-494.	4.1	5

HIROYUKI SHINTO

#	Article	IF	CITATIONS
37	Visual sensing of proteins using gold nanoparticles coated with polyphenolic glycoside. Advanced Powder Technology, 2020, 31, 4129-4133.	4.1	5
38	Adhesion and cytotoxicity of positively charged nanoparticles toward budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe. Advanced Powder Technology, 2020, 31, 3686-3694.	4.1	5
39	Interaction Forces between Hydrophilic or Hydrophobized Silica Surfaces in Non-aqueous Media Studied by AFM. Journal of the Society of Powder Technology, Japan, 2011, 48, 296-302.	0.1	4
40	Lattice Boltzmann model for capillary interactions between particles at a liquid-vapor interface under gravity. Physical Review E, 2022, 105, 045316.	2.1	4
41	Amplification of Sensor Signals from Metal Mesh Device with Fine Periodic Structure. Analytical Sciences, 2019, 35, 619-623.	1.6	3
42	Formation of glyco-functionalized interfaces for protein binding using polyphenolic glycoside. Carbohydrate Research, 2020, 492, 108002.	2.3	3
43	Fabrication of ICG Dye-containing Particles by Growth of Polymer/Salt Aggregates and Measurement of Photoacoustic Signals. Chemistry Letters, 2014, 43, 495-497.	1.3	2
44	Decomposition of amyloid fibrils by NIR-active upconversion nanoparticles. Photochemical and Photobiological Sciences, 2020, 19, 29-33.	2.9	2
45	Computational Fluid Dynamics Study of Wetting, Capillary Forces, and Pickering Emulsions. Oleoscience, 2012, 12, 63-70.	0.0	2
46	Computer Simulation of Wetting and Capillary Forces —Molecular Modeling and Fluid Dynamics—. Journal of the Society of Powder Technology, Japan, 2009, 46, 25-34.	0.1	2
47	Solid / Liquid Interfacial Structures, Surface Forces, and Rheology of Colloidal Dispersions Comprised of Silica Particles Suspended in Liquid Epoxy Resins. Journal of the Society of Powder Technology, Japan, 2012, 49, 599-607.	0.1	1
48	Preparation and characterization of glycopolymers with biphenyl spacers via Suzuki coupling reaction. Organic and Biomolecular Chemistry, 2021, 19, 4474-4477.	2.8	1
49	Development of microparticle counting sensor based on structural and spectroscopic properties of metal mesh device. Advanced Powder Technology, 2021, 32, 1920-1926.	4.1	1
50	Molecular Dynamics Calculation of Interaction Forces between Colloids in Aqueous Electrolyte Solutions Using an Implicit Solvent Model. Kagaku Kogaku Ronbunshu, 2005, 31, 295-300.	0.3	1
51	1. Particle Characteristics and Measurementâ€,1.8â€,Basic Electrostatics of Powderâ€,1.8.2â€,Electrification and Electrokinetics of Particles in Liquid Media. Journal of the Society of Powder Technology, Japan, 2017, 54, 673-691.	0.1	1
52	Last Lecture of Prof. Ko Higashitani at Kyoto University. Journal of the Society of Powder Technology, Japan, 2008, 45, 578-581.	0.1	0
53	Effects of Particle Volume Fraction and Surface Modifiers on Narrow Gap Filling by Liquid Epoxy Resins Containing Silica Particles. Journal of the Society of Powder Technology, Japan, 2013, 50, 552-560.	0.1	0
54	Importance of Capillary Bridge Forces for Multiphase Flows. Japanese Journal of Multiphase Flow, 2014, 28, 458-465.	0.3	0

Ηιγογικι Shinto

#	Article	IF	CITATIONS
55	Theoretical Study of Long-Range Attractive Interactions between Solvophobic Surfaces in Liquid Media. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2017, 25, 67-70.	0.0	0
56	Fabrication and Application of Functional Soft Particles Using Red Blood Cells as Template. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2020, 27, 53-57.	0.0	0
57	1.â€,Particle Characteristics and Measurement 1.13â€,Optical Properties 1.13.3 Photophoresis, Optical Tweezers, and Photoacoustics. Journal of the Society of Powder Technology, Japan, 2021, 58, 557-567.	0.1	0
58	Formation of a glyco-functionalized interface on polyethylene using a side-chain crystalline block copolymer with epoxide. Polymer Journal, 0, , .	2.7	0