
Robert Mokaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/645701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy and Environmental Science, 2014, 7, 1250-1280.	15.6	1,229
2	Enhanced Hydrogen Storage Capacity of High Surface Area Zeolite-like Carbon Materials. Journal of the American Chemical Society, 2007, 129, 1673-1679.	6.6	568
3	Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for Highâ€Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011, 1, 356-361.	10.2	538
4	Polypyrroleâ€Derived Activated Carbons for Highâ€Performance Electrical Doubleâ€Layer Capacitors with Ionic Liquid Electrolyte. Advanced Functional Materials, 2012, 22, 827-834.	7.8	396
5	Synthesis of Ordered Mesoporous Carbon and Nitrogen-Doped Carbon Materials with Graphitic Pore Walls via a Simple Chemical Vapor Deposition Method. Advanced Materials, 2004, 16, 1553-1558.	11.1	351
6	Superior CO ₂ Adsorption Capacity on Nâ€doped, High‣urfaceâ€Area, Microporous Carbons Templated from Zeolite. Advanced Energy Materials, 2011, 1, 678-683.	10.2	328
7	Templated nanoscale porous carbons. Nanoscale, 2010, 2, 639.	2.8	299
8	A Porous Framework Polymer Based on a Zinc(II) 4,4â€~-Bipyridine-2,6,2â€~,6â€~-tetracarboxylate: Synthesis, Structure, and "Zeolite-Like―Behaviors. Journal of the American Chemical Society, 2006, 128, 10745-10753.	6.6	296
9	Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template. Advanced Materials, 2004, 16, 727-732.	11.1	279
10	Biomass-derived activated carbon with simultaneously enhanced CO ₂ uptake for both pre and post combustion capture applications. Journal of Materials Chemistry A, 2016, 4, 280-289.	5.2	251
11	Preparation and Hydrogen Storage Properties of Zeolite-Templated Carbon Materials Nanocast via Chemical Vapor Deposition:Â Effect of the Zeolite Template and Nitrogen Doping. Journal of Physical Chemistry B, 2006, 110, 18424-18431.	1.2	243
12	Ordered Mesoporous Carbon Hollow Spheres Nanocast Using Mesoporous Silica via Chemical Vapor Deposition. Advanced Materials, 2004, 16, 886-891.	11.1	203
13	Generalized and Facile Synthesis Approach to N-Doped Highly Graphitic Mesoporous Carbon Materials. Chemistry of Materials, 2005, 17, 1553-1560.	3.2	193
14	Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nature Communications, 2017, 8, 1545.	5.8	192
15	Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Applied Catalysis B: Environmental, 2011, 110, 50-57.	10.8	184
16	Improving the Stability of Mesoporous MCM-41 Silica via Thicker More Highly Condensed Pore Walls. Journal of Physical Chemistry B, 1999, 103, 10204-10208.	1.2	176
17	Acidity and catalytic activity of the mesoporous aluminosilicate molecular sieve MCM-41. Catalysis Letters, 1996, 37, 113-120.	1.4	174
18	Hydrogen Storage in High Surface Area Carbons: Experimental Demonstration of the Effects of Nitrogen Doping. Journal of the American Chemical Society, 2009, 131, 16493-16499.	6.6	174

#	Article	IF	CITATIONS
19	Ultrastable Mesoporous Aluminosilicates by Grafting Routes. Angewandte Chemie - International Edition, 1999, 38, 2930-2934.	7.2	161
20	Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. Energy and Environmental Science, 2011, 4, 2930.	15.6	155
21	Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity. Energy and Environmental Science, 2017, 10, 2552-2562.	15.6	154
22	Optimization of the Pore Structure of Biomass-Based Carbons in Relation to Their Use for CO ₂ Capture under Low- and High-Pressure Regimes. ACS Applied Materials & Interfaces, 2018, 10, 1623-1633.	4.0	146
23	Valorization of Lignin Waste: Carbons from Hydrothermal Carbonization of Renewable Lignin as Superior Sorbents for CO ₂ and Hydrogen Storage. ACS Sustainable Chemistry and Engineering, 2015, 3, 1658-1667.	3.2	144
24	Post-synthesis grafting of Al onto MCM-41. Chemical Communications, 1997, , 2185-2186.	2.2	140
25	Mesostructured Hollow Spheres of Graphitic N-Doped Carbon Nanocast from Spherical Mesoporous Silica. Journal of Physical Chemistry B, 2004, 108, 19293-19298.	1.2	138
26	Physicochemical Characterisation and Catalytic Activity of Primary Amine Templated Aluminosilicate Mesoporous Catalysts. Journal of Catalysis, 1997, 172, 211-221.	3.1	134
27	Highly Ordered Mesoporous Silicon Oxynitride Materials as Base Catalysts. Angewandte Chemie - International Edition, 2003, 42, 2639-2644.	7.2	134
28	Generalized Mechanochemical Synthesis of Biomassâ€Đerived Sustainable Carbons for High Performance CO ₂ Storage. Advanced Energy Materials, 2015, 5, 1500867.	10.2	130
29	Hollow spheres of crystalline porous metal oxides: A generalized synthesis route via nanocasting with mesoporous carbon hollow shells. Journal of Materials Chemistry, 2005, 15, 3126.	6.7	125
30	Biomass to porous carbon in one step: directly activated biomass for high performance CO ₂ storage. Journal of Materials Chemistry A, 2017, 5, 12330-12339.	5.2	122
31	Al Content Dependent Hydrothermal Stability of Directly Synthesized Aluminosilicate MCM-41. Journal of Physical Chemistry B, 2000, 104, 8279-8286.	1.2	115
32	Is N-Doping in Porous Carbons Beneficial for CO ₂ Storage? Experimental Demonstration of the Relative Effects of Pore Size and N-Doping. Chemistry of Materials, 2016, 28, 994-1001.	3.2	113
33	Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage. Microporous and Mesoporous Materials, 2013, 179, 151-156.	2.2	112
34	Bifunctional Hybrid Mesoporous Organoaluminosilicates with Molecularly Ordered Ethylene Groups. Journal of the American Chemical Society, 2005, 127, 790-798.	6.6	109
35	On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials. Journal of Materials Chemistry, 2004, 14, 863.	6.7	107
36	High Surface Area Silicon Carbide Whiskers and Nanotubes Nanocast Using Mesoporous Silica. Chemistry of Materials, 2004, 16, 3877-3884.	3.2	102

#	Article	IF	CITATIONS
37	Superactivated carbide-derived carbons with high hydrogenstorage capacity. Energy and Environmental Science, 2010, 3, 223-227.	15.6	102
38	Compactivation: A mechanochemical approach to carbons with superior porosity and exceptional performance for hydrogen and CO2 storage. Nano Energy, 2015, 16, 173-185.	8.2	100
39	A simplified synthesis of N-doped zeolite-templated carbons, the control of the level of zeolite-like ordering and its effect on hydrogen storage properties. Carbon, 2011, 49, 844-853.	5.4	94
40	Ordered Mesoporous Carbon Monoliths:  CVD Nanocasting and Hydrogen Storage Properties. Journal of Physical Chemistry C, 2007, 111, 10035-10039.	1.5	88
41	Aluminosilicate mesoporous molecular sieves with enhanced stability obtained by reacting MCM-41 with aluminium chlorohydrate. Chemical Communications, 1998, , 1839-1840.	2.2	87
42	Supercritical Fluid-Mediated Alumination of Mesoporous Silica and Its Beneficial Effect on Hydrothermal Stability. Journal of the American Chemical Society, 2002, 124, 10636-10637.	6.6	85
43	Simultaneous Control of Morphology and Porosity in Nanoporous Carbon:  Graphitic Mesoporous Carbon Nanorods and Nanotubules with Tunable Pore Size. Chemistry of Materials, 2006, 18, 140-148.	3.2	85
44	Low temperature synthesized carbon nanotube superstructures with superior CO ₂ and hydrogen storage capacity. Journal of Materials Chemistry A, 2015, 3, 5148-5161.	5.2	84
45	A simple flash carbonization route for conversion of biomass to porous carbons with high CO ₂ storage capacity. Journal of Materials Chemistry A, 2018, 6, 12393-12403.	5.2	83
46	Hydrogen Storage in High Surface Area Carbons with Identical Surface Areas but Different Pore Sizes: Direct Demonstration of the Effects of Pore Size. Journal of Physical Chemistry C, 2012, 116, 25734-25740.	1.5	80
47	Are mesoporous silicas and aluminosilicas assembled from zeolite seeds inherently hydrothermally stable? Comparative evaluation of MCM-48 materials assembled from zeolite seeds. Journal of Materials Chemistry, 2004, 14, 3427.	6.7	76
48	A family of microporous carbons prepared via a simple metal salt carbonization route with high selectivity for exceptional gravimetric and volumetric post-combustion CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 14696.	5.2	75
49	Efficient post-synthesis alumination of MCM-41 using aluminium chlorohydrate containing Al polycations. Journal of Materials Chemistry, 1999, 9, 555-561.	6.7	72
50	On the Hydrothermal Stability of Mesoporous Aluminosilicate MCM-48 Materials. Journal of Physical Chemistry B, 2003, 107, 6954-6960.	1.2	71
51	Enhancement of Hydrogen Storage Capacity of Zeolite-Templated Carbons by Chemical Activation. Journal of Physical Chemistry C, 2010, 114, 11314-11319.	1.5	68
52	Supercritical fluids: A route to palladium-aerogel nanocomposites. Journal of Materials Chemistry, 2004, 14, 1212.	6.7	67
53	Synthesis of mesoporous silica hollow spheres in supercritical CO2/water systems. Journal of Materials Chemistry, 2006, 16, 1751.	6.7	67
54	Compaction of a zirconium metal–organic framework (UiO-66) for high density hydrogen storage applications. Journal of Materials Chemistry A, 2018, 6, 23569-23577.	5.2	67

#	Article	IF	CITATIONS
55	Exceptional gravimetric and volumetric hydrogen storage for densified zeolite templated carbons with high mechanical stability. Energy and Environmental Science, 2014, 7, 427-434.	15.6	65
56	Porous clay heterostructures with enhanced acidity obtained from acid-activated clays. Chemical Communications, 2001, , 2100-2101.	2.2	64
57	Evolution of optimal porosity for improved hydrogen storage in templated zeolite-like carbons. Energy and Environmental Science, 2010, 3, 1773.	15.6	63
58	Synthesis of acidic aluminosilicate mesoporous molecular sieves using primary amines. Chemical Communications, 1996, , 981.	2.2	62
59	A cleaner way to nylon?. Nature, 2005, 437, 1243-1244.	13.7	59
60	Mesoporous boron nitride and boron-nitride-carbon materials from mesoporous silica templates. Journal of Materials Chemistry, 2008, 18, 235-241.	6.7	58
61	Ordered mesoporous MCM-41 silicon oxynitride solid base materials with high nitrogen content: synthesis, characterisation and catalytic evaluation. Journal of Materials Chemistry, 2004, 14, 2507.	6.7	56
62	Grafting of Al onto purely siliceous mesoporous molecular sieves. Physical Chemistry Chemical Physics, 1999, 1, 207-213.	1.3	55
63	Preparation of ultrahigh surface area porous carbons templated using zeolite 13X for enhanced hydrogen storage. Progress in Natural Science: Materials International, 2013, 23, 308-316.	1.8	55
64	Predictable and targeted activation of biomass to carbons with high surface area density and enhanced methane storage capacity. Energy and Environmental Science, 2020, 13, 2967-2978.	15.6	55
65	Hollow shells of high surface area graphitic N-doped carbon composites nanocast using zeolite templates. Microporous and Mesoporous Materials, 2005, 86, 69-80.	2.2	54
66	Synthesis of Mesoporous Aluminosilicates with Enhanced Stability and Ion-Exchange Capacity via a Secondary Crystallization Route. Advanced Materials, 2000, 12, 1681-1685.	11.1	53
67	Aligned N-Doped Carbon Nanotube Bundles Prepared via CVD Using Zeolite Substrates. Chemistry of Materials, 2005, 17, 4502-4508.	3.2	52
68	Molecularly Ordered Ethylene-Bridged Periodic Mesoporous Organosilica Spheres with Tunable Micrometer Sizes. Chemistry of Materials, 2006, 18, 1141-1148.	3.2	52
69	Hydrothermally stable restructured mesoporous silica. Chemical Communications, 2001, , 933-934.	2.2	50
70	High surface area metal salt templated carbon aerogels via a simple subcritical drying route: preparation and CO2 uptake properties. RSC Advances, 2013, 3, 17677.	1.7	48
71	High yield and high packing density porous carbon for unprecedented CO ₂ capture from the first attempt at activation of air-carbonized biomass. Journal of Materials Chemistry A, 2016, 4, 13324-13335.	5.2	47
72	Influence of pore wall thickness on the steam stability of Al-grafted MCM-41. Chemical Communications, 2001, , 633-634.	2.2	46

#	Article	IF	CITATIONS
73	Acidity and catalytic activity of aluminosilicate mesoporous molecular sieves prepared using primary amines. Chemical Communications, 1996, , 983.	2.2	45
74	Bridging the performance gap between electric double-layer capacitors and batteries with high-energy/high-power carbon nanotube-based electrodes. Journal of Materials Chemistry A, 2016, 4, 14586-14594.	5.2	44
75	Facile and high yield synthesis of mesostructured MCM-48 silica crystals. Journal of Materials Chemistry, 2003, 13, 657-659.	6.7	41
76	Aluminosilicate MCM-48 materials with enhanced stability via simple post-synthesis treatment in water. Microporous and Mesoporous Materials, 2004, 68, 1-10.	2.2	41
77	Preparation of alumina-pillared acid-activated clays and their use as chlorophyll adsorbents. Journal of Materials Chemistry, 1993, 3, 381.	6.7	39
78	A method for the synthesis of high quality large crystal MCM-41. Chemical Communications, 1999, , 51-52.	2.2	39
79	Ultra-high surface area mesoporous carbons for colossal pre combustion CO ₂ capture and storage as materials for hydrogen purification. Sustainable Energy and Fuels, 2017, 1, 1414-1424.	2.5	39
80	Restructuring of mesoporous silica: high quality large crystal MCMâ€41 via a seeded recrystallisation route. Journal of Materials Chemistry, 2000, 10, 1139-1145.	6.7	37
81	Alumination Pathways to Mesoporous Aluminosilicates with High-Temperature Hydrothermal Stability. ChemPhysChem, 2002, 3, 360-363.	1.0	37
82	The influence of template extraction on the properties of primary amine templated aluminosilicate mesoporous molecular sieves. Journal of Materials Chemistry, 1998, 8, 2819-2826.	6.7	36
83	The "silica garden'' as a BrÃ,nsted acid catalyst. Physical Chemistry Chemical Physics, 1999, 1, 4669-4672.	1.3	36
84	Periodic mesoporous organosilica mesophases are versatile precursors for the direct preparation of mesoporous silica/carbon composites, carbon and silicon carbide materials. Journal of Materials Chemistry, 2006, 16, 3417.	6.7	36
85	Surfactant Mediated Control of Pore Size and Morphology for Molecularly Ordered Ethylene-Bridged Periodic Mesoporous Organosilica. Journal of Physical Chemistry B, 2006, 110, 3889-3894.	1.2	36
86	High surface area ethylene-bridged mesoporous and supermicroporous organosilica spheres. Microporous and Mesoporous Materials, 2005, 86, 231-242.	2.2	35
87	Templating of carbon in zeolites under pressure: synthesis of pelletized zeolite templated carbons with improved porosity and packing density for superior gas (CO ₂ and H ₂) uptake properties. Journal of Materials Chemistry A, 2016, 4, 14254-14266.	5.2	35
88	Pre-mixed precursors for modulating the porosity of carbons for enhanced hydrogen storage: towards predicting the activation behaviour of carbonaceous matter. Journal of Materials Chemistry A, 2019, 7, 17466-17479.	5.2	35
89	The Mechanism of Chlorophyll Adsorption on Acid-Activated Clays. Journal of Solid State Chemistry, 1994, 111, 157-163.	1.4	34
90	Tuning the acidic and textural properties of ordered mesoporous silicas for their application as catalysts in the etherification of glycerol with isobutene. Catalysis Today, 2014, 227, 171-178.	2.2	34

#	Article	IF	CITATIONS
91	New perspectives on supercritical methane adsorption in shales and associated thermodynamics. Journal of Industrial and Engineering Chemistry, 2019, 78, 186-197.	2.9	34
92	Enhanced hydrothermal stability of Al-grafted MCM-48 prepared via various alumination routes. Microporous and Mesoporous Materials, 2004, 74, 179-188.	2.2	33
93	CVD Nanocasting Routes to Zeoliteâ€Templated Carbons for Hydrogen Storage. Chemical Vapor Deposition, 2010, 16, 322-328.	1.4	32
94	Characterisation and hydrogen storage of Pt-doped carbons templated by Pt-exchanged zeolite Y. Microporous and Mesoporous Materials, 2011, 142, 716-724.	2.2	32
95	Experimental Demonstration of Dynamic Temperature-Dependent Behavior of UiO-66 Metal–Organic Framework: Compaction of Hydroxylated and Dehydroxylated Forms of UiO-66 for High-Pressure Hydrogen Storage. ACS Applied Materials & Interfaces, 2020, 12, 24883-24894.	4.0	32
96	Nanocasting of High Surface Area Mesoporous Ga ₂ O ₃ and GaN Semiconductor Materials. Chemistry of Materials, 2009, 21, 4080-4086.	3.2	31
97	Chlorophyll adsorption by alumina-pillared acid-activated clays. JAOCS, Journal of the American Oil Chemists' Society, 1993, 70, 241-244.	0.8	30
98	Hydrothermally-induced morphological transformation of mesoporous MCM-41 silica. Microporous and Mesoporous Materials, 2001, 44-45, 119-127.	2.2	30
99	Crystalline-like Molecularly Ordered Mesoporous Aluminosilicates Derived from Aluminosilicaâ^'Surfactant Mesophases via Benign Template Removal. Journal of Physical Chemistry B, 2006, 110, 9122-9131.	1.2	30
100	The Effect of Particle Size on Aluminosilicate MCM-41 Catalysts Prepared via Grafting Routes. Journal of Catalysis, 1999, 186, 470-477.	3.1	29
101	Insertion of extra-framework Al into the framework of mesoporous MCM-41 aluminosilicates. Chemical Communications, 2000, , 1891-1892.	2.2	29
102	Steam Stable Mesoporous Silica MCM-41 Stabilized by Trace Amounts of Al. ACS Applied Materials & Interfaces, 2014, 6, 1902-1908.	4.0	28
103	Integrated biomass thermochemical conversion for clean energy production: Process design and economic analysis. Journal of Environmental Chemical Engineering, 2019, 7, 103093.	3.3	28
104	The effect of Al content of zeolite template on the properties and hydrogen storage capacity of zeolite templated carbons. Microporous and Mesoporous Materials, 2011, 144, 140-147.	2.2	27
105	A CVD route for the preparation of templated and activated carbons for gas storage applications using zeolitic imidazolate frameworks (ZIFs) as template. Microporous and Mesoporous Materials, 2014, 195, 258-265.	2.2	27
106	Layered double hydroxides as templates for nanocasting porous N-doped graphitic carbons via chemical vapour deposition. Microporous and Mesoporous Materials, 2007, 106, 147-154.	2.2	26
107	Mesoporous MCM-48 Aluminosilica Oxynitrides:  Synthesis and Characterization of Bifunctional Solid Acidâ 'Base Materials. Journal of Physical Chemistry C, 2008, 112, 1455-1462.	1.5	26
108	Mesoporous Aluminosilicates from a Zeolite BEA Recipe. Chemistry of Materials, 2011, 23, 2491-2498.	3.2	26

#	Article	IF	CITATIONS
109	Valorization of lignin waste: high electrochemical capacitance of lignin-derived carbons in aqueous and ionic liquid electrolytes. Journal of Materials Chemistry A, 2018, 6, 18701-18711.	5.2	26
110	High temperature synthesis of exceptionally stable pure silica MCM-41 and stabilisation of calcined mesoporous silicas via refluxing in water. Journal of Materials Chemistry, 2012, 22, 18872.	6.7	25
111	Formation of Molecularly Ordered Layered Mesoporous Silica via Phase Transformation of Silicateâ^'Surfactant Composites. Journal of Physical Chemistry B, 2004, 108, 11361-11367.	1.2	24
112	Supercritical CO2Mediated Incorporation of Pd onto Templated Carbons: A Route to Optimizing the Pd Particle Size and Hydrogen Uptake Density. ACS Applied Materials & Interfaces, 2013, 5, 5639-5647.	4.0	24
113	Crystalline mesoporous silicates from layered precursors. Journal of Materials Chemistry, 2008, 18, 1383.	6.7	23
114	The effects of metakaolinization and fused-metakaolinization on zeolites synthesized from quartz rich natural clays. Microporous and Mesoporous Materials, 2019, 290, 109668.	2.2	22
115	On the extended recrystallisation of mesoporous silica: characterisation of restructured pure silica MCM-41. Journal of Materials Chemistry, 2002, 12, 3027-3033.	6.7	21
116	To stir or not to stir: formation of hierarchical superstructures of molecularly ordered ethylene-bridged periodic mesoporous organosilicas. Journal of Materials Chemistry, 2006, 16, 395-400.	6.7	21
117	Porous carbons from sustainable sources and mild activation for targeted high-performance CO ₂ capture and storage. Materials Advances, 2020, 1, 3267-3280.	2.6	21
118	Modulating the porosity of carbons for improved adsorption of hydrogen, carbon dioxide, and methane: a review. Materials Advances, 2022, 3, 1905-1930.	2.6	21
119	Photophysical Properties of [60]Fullerenes and Phthalocyanines Embedded in Ordered Mesoporous Silica Films Annealed at Various Temperatures. Journal of Physical Chemistry B, 2005, 109, 5079-5084.	1.2	20
120	Alxn+-grafted MCM-41 Catalysts: Probing the Influence of Temperature on the Alumination Process. Journal of Catalysis, 2000, 193, 103-107.	3.1	19
121	New Insights into the Spatial Distribution of Aluminium in Various Mesoporous Aluminosilicates. ChemPhysChem, 2002, 3, 892-896.	1.0	18
122	One step room temperature synthesis of ordered mesoporous silicaSBA-15 mediated by cellulose nanoparticles. Journal of Materials Chemistry, 2010, 20, 320-325.	6.7	18
123	Pore Characteristics for Efficient CO ₂ Storage in Hydrated Carbons. ACS Applied Materials & Interfaces, 2019, 11, 44390-44398.	4.0	18
124	Super-microporous aluminosilicate catalysts via primary amine templating. Chemical Communications, 2001, , 1016-1017.	2.2	17
125	A study of the behaviour of mesoporous silicas in OH/CTABr/H2O systems: phase dependent stabilisation, dissolution or semi-pseudomorphic transformation. Journal of Materials Chemistry, 2003, 13, 3112.	6.7	17
126	Super-micropore/small mesopore composite pillared silicate and aluminosilicate materials from crystalline layered silicate Na-RUB-18. Microporous and Mesoporous Materials, 2011, 143, 104-114.	2.2	16

#	Article	IF	CITATIONS
127	Potential of Bioenergy in Rural Ghana. Sustainability, 2021, 13, 381.	1.6	16
128	Observation of some pore wall ordering in mesoporous silica. Chemical Communications, 2001, , 1092-1093.	2.2	15
129	Synthesis of hollow spherical mesoporous N-doped carbon materials with graphitic framework. Studies in Surface Science and Catalysis, 2005, , 565-572.	1.5	14
130	Co-pelletization of a zirconium-based metal-organic framework (UiO-66) with polymer nanofibers for improved useable capacity in hydrogen storage. International Journal of Hydrogen Energy, 2021, 46, 8607-8620.	3.8	14
131	Stability of Pillared Clays:Â Effect of Compaction on the Physicochemical Properties of Al-Pillared Clays. Chemistry of Materials, 2004, 16, 263-269.	3.2	13
132	Probing the effect of the carbonisation process on the textural properties and morphology of mesoporous carbons. Microporous and Mesoporous Materials, 2008, 113, 378-384.	2.2	13
133	Template-directed stepwise post-synthesis alumination of MCM-41 mesoporous silica. Chemical Communications, 2000, , 1541-1542.	2.2	12
134	Molecularly ordered layered aluminosilicate-surfactant mesophases and their conversion to hydrothermally stable mesoporous aluminosilicates. Microporous and Mesoporous Materials, 2006, 94, 295-303.	2.2	12
135	Confirmation of pore formation mechanisms in biochars and activated carbons by dual isotherm analysis. Materials Advances, 2022, 3, 3961-3971.	2.6	11
136	Highly Ordered Mesoporous Silicon Oxynitride Materials as Base Catalysts. Angewandte Chemie, 2003, 115, 2743-2748.	1.6	10
137	Aligned Bundles of Carbon Nanotubes Are Easily Grown on As-Synthesized Mesoporous Silicate Substrates. Journal of Physical Chemistry C, 2008, 112, 15157-15162.	1.5	10
138	Valorisation of adzuki bean waste to biofuel precursors via pyrolysis: kinetics, product distribution and characterisation. Biomass Conversion and Biorefinery, 2018, 8, 699-710.	2.9	10
139	Strongly acidic mesoporous aluminosilicates prepared via hydrothermal restructuring of a crystalline layered silicate. Journal of Materials Chemistry A, 2015, 3, 7799-7809.	5.2	9
140	Catalytic Upgrading of Pyrolytic Oil via In-situ Hydrodeoxygenation. Waste and Biomass Valorization, 2020, 11, 2935-2947.	1.8	9
141	Simultaneous quantification of acetaminophen and tryptophan using a composite graphene foam/Zr-MOF film modified electrode. New Journal of Chemistry, 2020, 44, 13108-13117.	1.4	9
142	Direct and mild non-hydroxide activation of biomass to carbons with enhanced CO ₂ storage capacity. Energy Advances, 2022, 1, 216-224.	1.4	9
143	Modulating the porosity of activated carbons <i>via</i> pre-mixed precursors for simultaneously enhanced gravimetric and volumetric methane uptake. Journal of Materials Chemistry A, 2022, 10, 13744-13757.	5.2	9
144	Synthesis And Characterization Of Pillared Acid-Activated Montmorillonites. Materials Research Society Symposia Proceedings, 1991, 233, 81.	0.1	8

#	Article	IF	CITATIONS
145	Influence of alumination pathway on the steam stability of Al-grafted MCM-41. Studies in Surface Science and Catalysis, 2003, 146, 435-438.	1.5	8
146	On the Shelf Life and Aging Stability of Mesoporous Silica: Insights on Thermodynamically Stable MCM-41 Structure from Assessment of 12-Year-Old Samples. Chemistry of Materials, 2012, 24, 4450-4458.	3.2	8
147	Porous N-doped carbon with various hollow-cored morphologies nanocast using zeolite templates via chemical vapour deposition. Studies in Surface Science and Catalysis, 2005, 156, 573-580.	1.5	7
148	Biofuel and valuable products recovery from Napier grass pre-processing: Process design and economic analysis. Journal of Environmental Chemical Engineering, 2019, 7, 102962.	3.3	7
149	Synthesis, characterization and density functional theory of copper(II) complex and cobalt(II) coordination polymer for detection of nitroaromatic explosives. Inorganica Chimica Acta, 2021, 515, 120048.	1.2	7
150	Effect of kaolin pre-treatment method and NaOH levels on the structure and properties of kaolin-derived faujasite zeolites. Materials Advances, 2021, 2, 5997-6010.	2.6	7
151	Rational synthesis of microporous carbons for enhanced post-combustion CO ₂ capture <i>via</i> non-hydroxide activation of air carbonised biomass. RSC Advances, 2022, 12, 20080-20087.	1.7	7
152	A hygrothermal modelling approach to water vapour sorption isotherm design for mesoporous humidity buffers. Microporous and Mesoporous Materials, 2015, 211, 113-123.	2.2	6
153	Self-Assembled Ultralarge Millimeter-Sized Graphitic Carbon Rods Grown on Mesoporous Silica Substrate. Chemistry of Materials, 2007, 19, 6317-6322.	3.2	5
154	Hidden crystalline components in mesoporous silicate. Journal of Materials Chemistry, 2012, 22, 23141.	6.7	5
155	Hygrothermal simulation-informed design of mesoporous desiccants for optimised energy efficiency of mixed mode air conditioning systems. Journal of Materials Chemistry A, 2015, 3, 17290-17303.	5.2	5
156	Reply: Mesoporous Zeolite ZSM-5 Nanocast from Mesoporous Carbon Templates. Advanced Materials, 2005, 17, 2791-2792.	11.1	4
157	Synthesis and characterisation of super-microporous aluminosilicates prepared via primary amine templating. Studies in Surface Science and Catalysis, 2002, 141, 141-150.	1.5	3
158	SURFACE ALUMINATION OF MESOPOROUS SILICATES. Series on Chemical Engineering, 2004, , 427-463.	0.2	2
159	Mesostructured aluminosilica oxynitrides: solid acid-base materials prepared via post-synthesis grafting routes. Studies in Surface Science and Catalysis, 2005, 156, 125-132.	1.5	2
160	A Co-Crystallised Cobalt(II) Cluster of Pyridinedicarboxylic Acid (PDC) as a Luminescent Material for Selective Sensing of Methanol. Journal of Fluorescence, 2021, 31, 1177-1190.	1.3	1
161	Direct Synthesis of Acidic Aluminosilicate Mesoporous Molecular Sieves. Materials Research Society Symposia Proceedings, 1996, 431, 83.	0.1	0
162	EFFECT OF CARBONISATION HEATING RAMP RATE ON THE PROPERTIES OF ORDERED MESOPOROUS CARBONS. , 2008, , .		0

#	ARTICLE	IF	CITATIONS
163	POROUS CARBON MATERIALS VIA CHEMICAL VAPOUR DEPOSITION USING AS-SYNTHESISED ZEOLITES AS TEMPLATE: SYNTHESIS AND HYDROGEN STORAGE PROPERTIES. , 2008, , .		Ο
164	Calcium coordination compounds of anionic forms of hydrogen dipicolinate and quinolinate: synthesis, characterization, crystal structures and DFT studies. Structural Chemistry, 0, , 1.	1.0	0