
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6456734/publications.pdf Version: 2024-02-01

Οττανία Οιμεερά"

#	Article	IF	CITATIONS
1	Hydrolysis of Al3+ in Aqueous Solutions: Experiments and Ab Initio Simulations. Liquids, 2022, 2, 26-38.	2.5	6
2	Speciation Study on O-Phosphorylethanolamine and O-Phosphorylcholine: Acid–Base Behavior and Mg2+ Interaction. Frontiers in Chemistry, 2022, 10, 864648.	3.6	6
3	Binding of Arsenic by Common Functional Groups: An Experimental and Quantum-Mechanical Study. Applied Sciences (Switzerland), 2022, 12, 3210.	2.5	3
4	Metal-Based Compounds in Antiviral Therapy. Biomolecules, 2022, 12, 933.	4.0	17
5	Ca2+ Complexation With Relevant Bioligands in Aqueous Solution: A Speciation Study With Implications for Biological Fluids. Frontiers in Chemistry, 2021, 9, 640219.	3.6	10
6	Editorial: Advances in Analytical Techniques and Methodology for Chemical Speciation Study. Frontiers in Chemistry, 2021, 9, 692144.	3.6	1
7	Oxazolidinone Antibiotics: Chemical, Biological and Analytical Aspects. Molecules, 2021, 26, 4280.	3.8	58
8	Understanding the behaviour of carnosine in aqueous solution: an experimental and quantum-based computational investigation on acid–base properties and complexation mechanisms with Ca ²⁺ and Mg ²⁺ . New Journal of Chemistry, 2021, 45, 20352-20364.	2.8	7
9	<i>Ab initio</i> molecular dynamics simulations and experimental speciation study of levofloxacin under different pH conditions. Physical Chemistry Chemical Physics, 2021, 23, 24403-24412.	2.8	2
10	Interaction of Ampicillin and Amoxicillin with Mn2+: A Speciation Study in Aqueous Solution. Molecules, 2020, 25, 3110.	3.8	13
11	Binding ability of arsenate towards Cu2+ and Zn2+: thermodynamic behavior and simulation under natural water conditions. Environmental Sciences: Processes and Impacts, 2020, 22, 1731-1742.	3.5	7
12	Complexation of As(III) by phosphonate ligands in aqueous fluids: Thermodynamic behavior, chemical binding forms and sequestering abilities. Journal of Environmental Sciences, 2020, 94, 100-110.	6.1	22
13	Removal of As(III) from Biological Fluids: Mono- versus Dithiolic Ligands. Chemical Research in Toxicology, 2020, 33, 967-974.	3.3	14
14	Arsenic–nucleotides interactions: an experimental and computational investigation. Dalton Transactions, 2020, 49, 6302-6311.	3.3	10
15	Phosphonic Derivatives of Nitrilotriacetic Acid as Sequestering Agents for Ca2+ in Aqueous Solution: A Speciation Study for Application in Natural Waters. ACS Earth and Space Chemistry, 2019, 3, 1942-1954.	2.7	10
16	Interaction between As(III) and Simple Thioacids in Water: An Experimental and ab Initio Molecular Dynamics Investigation. Journal of Physical Chemistry B, 2019, 123, 6090-6098.	2.6	10
17	Interactions of Inosine 5′-Monophosphate with Ca2+ and Mg2+: A Thermodynamic and Spectroscopic Study in Aqueous Solution. Journal of Chemical & Engineering Data, 2019, 64, 2859-2866.	1.9	4
18	Thermodynamic Study on the Interaction of Ampicillin and Amoxicillin with Ca ²⁺ in Aqueous Solution at Different Ionic Strengths and Temperatures. Journal of Chemical & Engineering Data, 2019, 64, 800-809.	1.9	12

#	Article	IF	CITATIONS
19	Thermodynamic parameters for the interaction between etidronic acid and inorganic and organic mercury(II). Journal of Chemical Thermodynamics, 2018, 121, 65-71.	2.0	10
20	Sequestration of HEDPA , NTA and phosphonic NTA derivatives towards Al 3+ in aqueous solution. Journal of Molecular Liquids, 2018, 261, 96-106.	4.9	13
21	Study of Al 3+ interaction with AMP , ADP and ATP in aqueous solution. Biophysical Chemistry, 2018, 234, 42-50.	2.8	25
22	Thermodynamic parameters for the protonation and the interaction of arsenate with Mg2+, Ca2+ and Sr2+: Application to natural waters. Chemosphere, 2018, 190, 72-79.	8.2	21
23	Modeling solubility and acid-base properties of some polar side chain amino acids in NaCl and (CH 3) 4 NCl aqueous solutions at different ionic strengths and temperatures. Fluid Phase Equilibria, 2018, 459, 51-64.	2.5	21
24	Effect of the ionic strength and temperature on the arsenic(V) -Fe3+ and -Al3+ interactions in aqueous solution. Fluid Phase Equilibria, 2018, 458, 9-15.	2.5	10
25	Stability of hydrolytic arsenic species in aqueous solutions: As ³⁺ <i>vs.</i> As ⁵⁺ . Physical Chemistry Chemical Physics, 2018, 20, 23272-23280.	2.8	30
26	Potentiometric, UV and 1 H NMR study on the interaction of penicillin derivatives with Zn(II) in aqueous solution. Biophysical Chemistry, 2017, 223, 1-10.	2.8	12
27	Thermodynamic and spectroscopic study on Al 3+ -polycarboxylate interaction in aqueous solution. Journal of Molecular Liquids, 2017, 232, 45-54.	4.9	17
28	Removal of di- and tri-alkyltin(IV) compounds by polyphosphonate ligand: A speciation perspective. Journal of Molecular Liquids, 2017, 240, 128-137.	4.9	10
29	Potentiometric, UV and 1 H NMR study on the interaction of Cu 2+ with ampicillin and amoxicillin in aqueous solution. Biophysical Chemistry, 2017, 224, 59-66.	2.8	11
30	Thermodynamic and spectroscopic study of Al 3+ interaction with glycine, l -cysteine and tranexamic acid in aqueous solution. Biophysical Chemistry, 2017, 230, 10-19.	2.8	7
31	Sequestration of Aluminium(III) by different natural and synthetic organic and inorganic ligands in aqueous solution. Chemosphere, 2017, 186, 535-545.	8.2	24
32	Sequestering Ability of Oligophosphate Ligands toward Al ³⁺ in Aqueous Solution. Journal of Chemical & Engineering Data, 2017, 62, 3981-3990.	1.9	32
33	Thermodynamics of Al3+-thiocarboxylate interaction in aqueous solution. Journal of Molecular Liquids, 2016, 222, 614-621.	4.9	26
34	Modeling solubility and acid–base properties of some amino acids in aqueous NaCl and (CH3)4NCl aqueous solutions at different ionic strengths and temperatures. SpringerPlus, 2016, 5, 928.	1.2	15
35	On the interaction of N -acetylcysteine with Pb 2+ , Zn 2+ , Cd 2+ and Hg 2+. Journal of Molecular Liquids, 2016, 223, 360-367.	4.9	25
36	Complexation of Hg2+, CH3Hg+, Sn2+ and (CH3)2Sn2+ with phosphonic NTA derivatives. New Journal of Chemistry, 2016, 40, 1443-1453.	2.8	27

#	Article	IF	CITATIONS
37	Solubility, protonation and activity coefficients of some aminobenzoic acids in NaClaq and (CH3)4NClaq, at different salt concentrations, at T= 298.15 K. Journal of Molecular Liquids, 2015, 212, 825-832.	4.9	16
38	Formation, stability and empirical relationships for the binding of Sn2+ by O-, N- and S-donor ligands. Journal of Molecular Liquids, 2014, 200, 329-339.	4.9	13
39	Acid–base and UV behavior of 3-(3,4-dihydroxyphenyl)-propenoic acid (caffeic acid) and complexing ability towards different divalent metal cations in aqueous solution. Journal of Molecular Liquids, 2014, 195, 9-16.	4.9	29
40	Thermodynamic data for Pb ²⁺ and Zn ²⁺ sequestration by biologically important S-donor ligands, at different temperatures and ionic strengths. New Journal of Chemistry, 2014, 38, 3973-3983.	2.8	39
41	Binding ability of glutathione towards alkyltin(IV) compounds in aqueous solution. Journal of Inorganic Biochemistry, 2013, 129, 84-93.	3.5	33
42	Sequestering ability of some chelating agents towards methylmercury(II). Analytical and Bioanalytical Chemistry, 2013, 405, 881-893.	3.7	31
43	Thermodynamics of HEDPA protonation in different media and complex formation with Mg2+ and Ca2+. Journal of Chemical Thermodynamics, 2013, 66, 151-160.	2.0	29
44	Aqueous solution chemistry of alkyltin(IV) compounds for speciation studies in biological fluids and natural waters. Coordination Chemistry Reviews, 2012, 256, 222-239.	18.8	79
45	Methylmercury(ii)-sulfur containing ligand interactions: a potentiometric, calorimetric and 1H-NMR study in aqueous solution. New Journal of Chemistry, 2011, 35, 800.	2.8	26
46	Potentiometric, Calorimetric, and ¹ H NMR Investigation on Hg ²⁺ -Mercaptocarboxylate Interaction in Aqueous Solution. Journal of Chemical & Engineering Data, 2011, 56, 1995-2004.	1.9	25
47	Acid–base and UV properties of some aminophenol ligands and their complexing ability towards Zn2+ in aqueous solution. Journal of Molecular Liquids, 2011, 159, 146-151.	4.9	29
48	Interaction of Inorganic Mercury(II) with Polyamines, Polycarboxylates, and Amino Acids. Journal of Chemical & Engineering Data, 2009, 54, 893-903.	1.9	37
49	Thermodynamic Protonation Parameters ofÂsomeÂSulfur-Containing Anions in NaClaq andÂ(CH3)4NClaq atÂt=25 °C. Journal of Solution Chemistry, 2009, 38, 1225-1245.	1.2	26
50	Binding of benzene-1,2,3,4,5,6-hexacarboxylate by polyammonium cations. Polyhedron, 2009, 28, 2703-2709.	2.2	2
51	Potentiometric, 1H NMR and ESI-MS investigation on dimethyltin(iv) cation–mercaptocarboxylate interaction in aqueous solution. New Journal of Chemistry, 2009, 33, 2286.	2.8	34
52	The Effect of Different Aqueous Ionic Media on the Acid-Base Properties of Some Open Chain Polyamines. Journal of Solution Chemistry, 2008, 37, 183-201.	1.2	35
53	Interaction of methyltin(IV) compounds with carboxylate ligands. Part 2: formation thermodynamic parameters, predictive relationships and sequestering ability. Applied Organometallic Chemistry, 2008, 22, 30-38.	3.5	12
54	Thermodynamic and spectroscopic study for the interaction of dimethyltin(IV) with L–cysteine in aqueous solution. Biophysical Chemistry, 2008, 133, 19-27.	2.8	27

OTTAVIA GIUFFRÃ"

#	Article	IF	CITATIONS
55	Interaction of methyltin(IV) compounds with carboxylate ligands. Part 1: formation and stability of methyltin(IV)-carboxylate complexes and their relevance in speciation studies of natural waters. Applied Organometallic Chemistry, 2006, 20, 89-98.	3.5	21
56	Thermodynamic and spectroscopic study of the binding of dimethyltin(IV) by citrate at 25 °C. Applied Organometallic Chemistry, 2006, 20, 425-435.	3.5	24
57	Protonation Constants of Ethylenediamine, Diethylenetriamine, and Spermine in NaCl(aq), Nal(aq), (CH3)4NCl(aq), and (C2H5)4NI(aq) at Different Ionic Strengths and t = 25 °C. Journal of Chemical & Engineering Data, 2005, 50, 1917-1923.	1.9	42
58	The Retention of Some Open-Chain Diamines on a Strong Cation-Exchange Resin in Ion Chromatography. Journal of Chromatographic Science, 2004, 42, 161-166.	1.4	3
59	Speciation of organotin compounds in NaCl aqueous solution: interaction of mono-, di- and tri-organotin(IV) cations with nucleotide 5′ monophosphates. Applied Organometallic Chemistry, 2004, 18, 653-661.	3.5	19
60	lonic Strength Dependence of Protonation Constants ofN-Alkyl Substituted Open Chain Diamines in NaClaq. Journal of Chemical & Engineering Data, 2004, 49, 109-115.	1.9	29
61	Thermodynamic Parameters for the Protonation of Poly(allylamine) in Concentrated LiCl(aq) and NaCl(aq). Journal of Chemical & Engineering Data, 2004, 49, 658-663.	1.9	24
62	Thermodynamics of Proton Association of Polyacrylates and Polymethacrylates in NaCl(aq). Journal of Solution Chemistry, 2003, 32, 967-976.	1.2	8
63	Speciation of phytate ion in aqueous solution. Non covalent interactions with biogenic polyamines. Chemical Speciation and Bioavailability, 2003, 15, 29-36.	2.0	32
64	The Dependence on Ionic Strength of Enthalpies of Protonation for Polyamines in NaCl(aq). Journal of Chemical & Engineering Data, 2002, 47, 1205-1212.	1.9	12
65	Interaction of L-tartaric acid with alkaline metals and open chain polyammonium cations in aqueous solution. Dalton Transactions RSC, 2002, , 435-440.	2.3	7
66	Interaction of l-malic acid with alkaline metals and open chain polyammonium cations in aqueous solution. Talanta, 2001, 54, 25-36.	5.5	6
67	Thermodynamic parameters for the binding of inorganic and organic anions by biogenic polyammonium cations. Talanta, 2001, 54, 1135-1152.	5.5	42
68	Dependence on Ionic Strength of Protonation Enthalpies of Polycarboxylate Anions in NaCl Aqueous Solution. Journal of Chemical & Engineering Data, 2001, 46, 1417-1424.	1.9	51
69	Dependence on Ionic Strength of Polyamine Protonation in NaCl Aqueous Solution. Journal of Chemical & Engineering Data, 2001, 46, 1425-1435.	1.9	48
70	Chemical speciation of nucleotide 5′-monophosphates in the presence of biogenic amines. Chemical Speciation and Bioavailability, 2001, 13, 113-119.	2.0	6
71	Medium effects on the protonation enthalpies of linear diamines in NaCl aqueous solutions at 25°C. Thermochimica Acta, 2000, 363, 29-35.	2.7	8
72	Thermodynamics of Protonated Amine–Hexacyanoferrate(II) Complex Formation in Aqueous Solution. Journal of Solution Chemistry, 1998, 27, 655-662.	1.2	1

#	Article	IF	CITATIONS
73	Thermodynamic parameters for the binding of ATP by protonated open-chain polyamines. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1091-1095.	1.7	23
74	ΔG° and TΔS° charge relationships for the binding of carboxylic anions by open-chain polyammonium cations. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2395-2398.	1.7	19
75	Thermodynamic Parameters for the Formation of Pyrophosphate-protonated Polyamine Complexes. Journal of Chemical Research Synopses, 1998, , 480-481.	0.3	3
76	Formation and stability of pyrophosphate complexes with aliphatic amines in aqueous solution. Talanta, 1996, 43, 707-717.	5.5	16
77	Quantitative study of the interactions of ATP with amines and amino acids. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1511-1518.	1.7	21
78	Binding of carboxylic ligands by protonated amines. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4219-4226.	1.7	31
79	Binding of hexacyanoferrate(II) by aliphatic amines in aqueous solution. Journal of Solution Chemistry, 1996, 25, 155-165.	1.2	6