
Sumesh P Thampi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6456730/publications.pdf Version: 2024-02-01

SIIMESH D THAMD

#	Article	IF	CITATIONS
1	An experimental and theoretical study of the inward particle drift in contact line deposits. Soft Matter, 2022, 18, 2414-2421.	2.7	2
2	Order-stampede transitions in human crowds: The role of individualistic and cooperative forces. Physica A: Statistical Mechanics and Its Applications, 2022, , 127349.	2.6	1
3	Helical flow states in active nematics. Physical Review E, 2022, 106, .	2.1	6
4	Hydrodynamic collision between a microswimmer and a passive particle in a micro-channel. Soft Matter, 2021, 17, 3380-3396.	2.7	6
5	Patterns from drops drying on inclined substrates. Soft Matter, 2021, 17, 7670-7681.	2.7	11
6	Further Insights into Patterns from Drying Particle Laden Sessile Drops. Langmuir, 2021, 37, 4395-4402.	3.5	6
7	Dilute dispersion of compound particles: deformation dynamics and rheology. Journal of Fluid Mechanics, 2021, 917, .	3.4	3
8	Wall-curvature driven dynamics of a microswimmer. Physical Review Fluids, 2021, 6, .	2.5	4
9	Collective surfing of two self-propelled swimmers at liquid-air interface aided by self-induced Marangoni flow. Physical Review Fluids, 2021, 6, .	2.5	1
10	Modeling polymer crystallisation induced by a moving heat sink. Soft Matter, 2021, 17, 2518-2529.	2.7	5
11	Boundary layer description of directional polymer crystallisation. Soft Matter, 2021, 17, 7755-7768.	2.7	3
12	Particle size and substrate wettability dependent patterns in dried pendant drops. Journal of Physics Condensed Matter, 2021, 33, 024003.	1.8	6
13	Drops spreading on fluid surfaces: Transition from Laplace to Marangoni regime. Physical Review Fluids, 2021, 6, .	2.5	5
14	Flow transitions and length scales of a channel-confined active nematic. Soft Matter, 2021, 17, 10640-10648.	2.7	11
15	Flow States and Transitions of an Active Nematic in a Three-Dimensional Channel. Physical Review Letters, 2020, 125, 148002.	7.8	30
16	A Lattice Boltzmann Method for Electromagnetic Wave Propagation in Medium. , 2020, , .		0
17	Colloidal hydrodynamics using a quasi-steady algorithm in lattice Boltzmann method. Bulletin of Materials Science, 2020, 43, 1.	1.7	0
18	Rotating-Particle Micropump Inspired by Taylor's Swimming Sheet. Physical Review Applied, 2020, 14, .	3.8	0

SUMESH P THAMPI

#	Article	IF	CITATIONS
19	Beyond Coffee Rings: Drying Drops of Colloidal Dispersions on Inclined Substrates. ACS Omega, 2020, 5, 11262-11270.	3.5	20
20	Robust Method to Determine Critical Micelle Concentration via Spreading Oil Drops on Surfactant Solutions. Langmuir, 2020, 36, 8100-8110.	3.5	22
21	Activity Induced Nematic Order in Isotropic Liquid Crystals. Journal of Statistical Physics, 2020, 180, 699-709.	1.2	25
22	Deformation dynamics of an active compound particle in an imposed shear flow—a theoretical study. Journal Physics D: Applied Physics, 2020, 53, 314001.	2.8	8
23	Statics and dynamics of drops spreading on a liquid-liquid interface. Physical Review Fluids, 2020, 5, .	2.5	4
24	Reply to "Comment on â€~Patterns in Drying Drops Dictated by Curvature-Driven Particle Transport'― Langmuir, 2019, 35, 9991-9993.	3.5	2
25	Confinement induced trajectory of a squirmer in a two dimensional channel. Fluid Dynamics Research, 2019, 51, 065504.	1.3	10
26	Dynamics and stability of a concentric compound particle – a theoretical study. Soft Matter, 2019, 15, 7605-7615.	2.7	10
27	Active transport in a channel: stabilisation by flow or thermodynamics. Soft Matter, 2019, 15, 1597-1604.	2.7	25
28	Sparse Game Changers Restore Collective Motion in Panicked Human Crowds. Physical Review Letters, 2019, 122, 048002.	7.8	19
29	Transition from Linear to Circular Motion in Active Spherical-Cap Colloids. Langmuir, 2019, 35, 4718-4725.	3.5	13
30	Patterns in Drying Drops Dictated by Curvature-Driven Particle Transport. Langmuir, 2018, 34, 11473-11483.	3.5	33
31	Topological defects in epithelia govern cell death and extrusion. Nature, 2017, 544, 212-216.	27.8	511
32	Lattice Boltzmann simulations of a radiatively participating fluid in Rayleigh–Benard convection. Numerical Heat Transfer; Part A: Applications, 2017, 72, 313-329.	2.1	6
33	Active turbulence in active nematics. European Physical Journal: Special Topics, 2016, 225, 651-662.	2.6	53
34	Defect-Mediated Morphologies in Growing Cell Colonies. Physical Review Letters, 2016, 117, 048102.	7.8	114
35	Active micromachines: Microfluidics powered by mesoscale turbulence. Science Advances, 2016, 2, e1501854.	10.3	63
36	Universal evolution of a viscous–capillary spreading drop. Soft Matter, 2016, 12, 6073-6078.	2.7	6

SUMESH P THAMPI

#	Article	IF	CITATIONS
37	Stabilization of active matter by flow-vortex lattices and defect ordering. Nature Communications, 2016, 7, 10557.	12.8	115
38	Intrinsic free energy in active nematics. Europhysics Letters, 2015, 112, 28004.	2.0	36
39	Celebrating Soft Matter's 10th Anniversary: Cell division: a source of active stress in cellular monolayers. Soft Matter, 2015, 11, 7328-7336.	2.7	82
40	Morphological evolution of domains in spinodal decomposition. Physical Review E, 2015, 91, 010101.	2.1	13
41	Driven active and passive nematics. Molecular Physics, 2015, 113, 2656-2665.	1.7	14
42	Rolling motion in moving droplets. Pramana - Journal of Physics, 2015, 84, 409-421.	1.8	2
43	Instabilities and topological defects in active nematics. Europhysics Letters, 2014, 105, 18001.	2.0	111
44	Vorticity, defects and correlations in active turbulence. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130366.	3.4	99
45	Biphasic, Lyotropic, Active Nematics. Physical Review Letters, 2014, 113, 248303.	7.8	81
46	Active nematic materials with substrate friction. Physical Review E, 2014, 90, 062307.	2.1	48
47	Velocity Correlations in an Active Nematic. Physical Review Letters, 2013, 111, 118101.	7.8	163
48	Do Liquid Drops Roll or Slide on Inclined Surfaces?. Langmuir, 2013, 29, 3339-3346.	3.5	50
49	Lattice differential operators for computational physics. Europhysics Letters, 2013, 101, 50006.	2.0	24
50	lsotropic discrete Laplacian operators from lattice hydrodynamics. Journal of Computational Physics, 2013, 234, 1-7.	3.8	62
51	Minimum energy shapes of one-side-pinned static drops on inclined surfaces. Physical Review E, 2011, 84, 046304.	2.1	15
52	Lattice-Boltzmann-Langevin simulations of binary mixtures. Physical Review E, 2011, 84, 046709.	2.1	31
53	Simulation of polyester melt spinning with axial quench for increasing productivity. Journal of Applied Polymer Science, 2010, 116, NA-NA.	2.6	1
54	The possible equilibrium shapes of static pendant drops. Journal of Chemical Physics, 2010, 133, 144707.	3.0	19

#	Article	IF	CITATIONS
55	Analysis of phase change during pervaporation with single component permeation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290, 263-272.	4.7	8
56	Pervaporation from a Dense Membrane:Â Roles of Permeantâ~'Membrane Interactions, Kelvin Effect, and Membrane Swelling. Langmuir, 2004, 20, 4708-4714.	3.5	38