List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6456577/publications.pdf Version: 2024-02-01

AS RAMOS

#	Article	IF	CITATIONS
1	Development of Actuators for Repairing Cracks by Coating W Wires with Reactive Multilayers. Materials, 2022, 15, 869.	1.3	0
2	Joining of Ti6Al4V to Al2O3 Using Nanomultilayers. Nanomaterials, 2022, 12, 706.	1.9	0
3	Diffusion Bonding of Ti6Al4V to Al2O3 Using Ni/Ti Reactive Multilayers. Metals, 2021, 11, 655.	1.0	6
4	Experimental Analysis of NiTi Alloy during Strain-Controlled Low-Cycle Fatigue. Materials, 2021, 14, 4455.	1.3	3
5	Investigating a Commercial Functional Adhesive with 12-MDPB and Reactive Filler to Strengthen the Adhesive Interface in Eroded Dentin. Polymers, 2021, 13, 3562.	2.0	2
6	Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers. Metals, 2021, 11, 1728.	1.0	6
7	Follow-up structural evolution of Ni/Ti reactive nano and microlayers during diffusion bonding of NiTi to Ti6Al4V in a synchrotron beamline. Journal of Materials Processing Technology, 2020, 275, 116354.	3.1	17
8	Effect of Deposition Parameters on the Reactivity of Al/Ni Multilayer Thin Films. Coatings, 2020, 10, 721.	1.2	3
9	New WC-Cu composites for the divertor in fusion reactors. Journal of Nuclear Materials, 2019, 521, 31-37.	1.3	12
10	Characterization of ultrasonic soldering of Ti and Ni with Ni/Al reactive multilayer deposition. PrzeglÄd Spawalnictwa, 2019, 91, 51-57.	0.5	1
11	Diffusion Bonding of TiAl to Ti6Al4V Using Nanolayers. Journal of Materials Engineering and Performance, 2018, 27, 5064-5068.	1.2	8
12	Microstructural Characterization of Dissimilar Titanium Alloys Joints Using Ni/Al Nanolayers. Metals, 2018, 8, 715.	1.0	10
13	Interaction between Ni/Ti Nanomultilayers and Bulk Ti-6Al-4V during Heat Treatment. Metals, 2018, 8, 878.	1.0	4
14	The effect of heating rate on the phase transformation of Ni/Ti multilayer thin films. Vacuum, 2017, 139, 23-25.	1.6	8
15	TiAl diffusion bonding using Ni/Ti multilayers. Welding in the World, Le Soudage Dans Le Monde, 2017, 61, 1267-1273.	1.3	12
16	Coating of Tungsten Wire with Ni/Al Multilayers for Self-Healing Applications. Metals, 2017, 7, 574.	1.0	5
17	Intermetallics. Metals, 2017, 7, 446.	1.0	2
18	Joining of TiAl to Steel by Diffusion Bonding with Ni/Ti Reactive Multilayers. Metals, 2016, 6, 96.	1.0	31

#	Article	IF	CITATIONS
19	Characterization of TiAl diffusion bonds using Ni/Ti nanolayers. Microscopy and Microanalysis, 2016, 22, 54-55.	0.2	0
20	Cold rolled versus sputtered Ni/Ti multilayers for reaction-assisted diffusion bonding. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 337-344.	1.3	14
21	Ni/Al Multilayers Produced by Accumulative Roll Bonding and Sputtering. Journal of Materials Engineering and Performance, 2016, 25, 4394-4401.	1.2	13
22	Microstructural Characterization of Diffusion Bonds Assisted by Ni/Ti Nanolayers. Journal of Materials Engineering and Performance, 2016, 25, 3245-3251.	1.2	7
23	Reaction-assisted diffusion bonding of TiAl alloy to steel. Materials Chemistry and Physics, 2016, 171, 73-82.	2.0	17
24	Characterization of nanolayers at TiAl diffusion bonds. Microscopy and Microanalysis, 2015, 21, 96-97.	0.2	0
25	NiTi Wires Coated by Nanomultilayers – A Solution for Self-healing?. Microscopy and Microanalysis, 2015, 21, 11-12.	0.2	0
26	Phase transformations in Ni/Ti multilayers investigated by synchrotron radiation-based x-ray diffraction. Journal of Alloys and Compounds, 2015, 646, 1165-1171.	2.8	17
27	TEM and HRTEM Characterization of TiAl Diffusion Bonds Using Ni/Al Nanolayers. Microscopy and Microanalysis, 2015, 21, 132-139.	0.2	13
28	In Situ Characterization of NiTi/Ti6Al4V Joints During Reaction-Assisted Diffusion Bonding Using Ni/Ti Multilayers. Journal of Materials Engineering and Performance, 2014, 23, 1625-1629.	1.2	22
29	In Situ Phase Evolution of Ni/Ti Reactive Multilayers. Journal of Materials Engineering and Performance, 2014, 23, 2446-2449.	1.2	1
30	In-situ thermal evolution of Ni/Ti multilayer thin films. Intermetallics, 2014, 51, 11-17.	1.8	27
31	Thermal stability of nanoscale metallic multilayers. Thin Solid Films, 2014, 571, 268-274.	0.8	21
32	Reaction zone formed during diffusion bonding of TiNi to Ti6Al4V using Ni/Ti nanolayers. Journal of Materials Science, 2013, 48, 7718-7727.	1.7	37
33	Intermetallic compound formation in Pd/Al multilayer thin films. Intermetallics, 2012, 25, 70-74.	1.8	13
34	Diffusion bonding of gamma-TiAl using modified Ti/Al nanolayers. Journal of Alloys and Compounds, 2012, 536, S424-S427.	2.8	29
35	Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer. Journal of Materials Engineering and Performance, 2012, 21, 678-682.	1.2	26
36	An efficient strategy to detect latent fingermarks on metallic surfaces. Forensic Science International, 2012, 217, 196-203.	1.3	14

#	Article	IF	CITATIONS
37	Anisothermal solid-state reactions of Ni/Al nanometric multilayers. Intermetallics, 2011, 19, 350-356.	1.8	50
38	Diffusion bonding of TiAl using reactive Ni/Al nanolayers and Ti and Ni foils. Materials Chemistry and Physics, 2011, 128, 202-207.	2.0	58
39	TEM Characterization of As-Deposited and Annealed Ni/Al Multilayer Thin Film. Microscopy and Microanalysis, 2010, 16, 662-669.	0.2	9
40	Diffusion bonding of TiAl using Ni/Al multilayers. Journal of Materials Science, 2010, 45, 4351-4357.	1.7	47
41	Reaction-Assisted Diffusion Bonding of Advanced Materials. Defect and Diffusion Forum, 2010, 297-301, 972-977.	0.4	17
42	A corrosion study of nanocrystalline copper thin films. Corrosion Science, 2010, 52, 3891-3895.	3.0	19
43	Production of intermetallic compounds from Ti/Al and Ni/Al multilayer thin films—A comparative study. Journal of Alloys and Compounds, 2009, 484, 335-340.	2.8	67
44	Intermixing in Ni/Al multilayer thin films. Microscopy and Microanalysis, 2009, 15, 75-76.	0.2	4
45	Joining of TiAl alloys using Ni/Al multilayers. Microscopy and Microanalysis, 2009, 15, 73-74.	0.2	0
46	Ti/Al Nanolayered Thin Films. Journal of Nanoscience and Nanotechnology, 2009, 9, 3627-3632.	0.9	3
47	Intermetallic phase formation in nanometric Ni/Al multilayer thin films. Intermetallics, 2008, 16, 1061-1065.	1.8	67
48	Bonding ^{ĵ3} -TiAl Alloys Using Ti/Al Nanolayers Doped with Ag. Materials Science Forum, 2008, 587-588, 488-491.	0.3	3
49	Effect of Temperature in the Evolution of Ni/Al Nanolayers. Microscopy and Microanalysis, 2008, 14, 41-42.	0.2	0
50	Microstructure evolution during Ni/Al multilayer reactions. , 2008, , 487-488.		1
51	Mullitization kinetics from silica- and alumina-rich wastes. Ceramics International, 2007, 33, 59-66.	2.3	28
52	From Ti–Al- to Ti–Al–N-sputtered 2D materials. Journal of Materials Science, 2007, 42, 9145-9153.	1.7	4
53	Solid-state diffusion bonding of gamma-TiAl alloys using Ti/Al thin films as interlayers. Intermetallics, 2006, 14, 1151-1156.	1.8	67
54	Nanometric multilayers: A new approach for joining TiAl. Intermetallics, 2006, 14, 1157-1162.	1.8	57

#	Article	IF	CITATIONS
55	The formation of \hat{I}^3 -TiAl from Ti/Al multilayers with different periods. Surface and Coatings Technology, 2006, 200, 6196-6200.	2.2	38
56	Joining of TiAl Using a Thin Multilayer. Materials Science Forum, 2006, 514-516, 1323-1327.	0.3	4
57	Joining of Gamma-Based Titanium Aluminides – A Review. Materials Science Forum, 2006, 514-516, 483-489.	0.3	5
58	Kinetics of the thin films transformation Ti/Al multilayer→γ-TiAl. Surface and Coatings Technology, 2005, 200, 326-329.	2.2	36
59	Properties of Î ³ -TiAl-M (M = Ag, Cr) Sputtered Films. Materials Science Forum, 2003, 426-432, 1843-1848.	0.3	8
60	Microstructural Characterisation of Î ³ -TiAl Joints. Key Engineering Materials, 2002, 230-232, 27-30.	0.4	8
61	Oxidation Behaviour of (TiAl)-Based Intermetallics Doped with Silver. Key Engineering Materials, 2002, 230-232, 60-63.	0.4	0
62	On the evaluation of the ductility of thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 337, 97-103.	2.6	4
63	Mechanical characterisation of γ-TiAl thin films obtained by two different sputtering routes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 147-152.	2.6	14
64	An approach using thin films as a predictive way to produce new bulk materials. Surface and Coatings Technology, 2000, 131, 162-166.	2.2	2
65	Characterisation of Modified Sputtered (TiAl)-Based Intermetallic Materials Doped with Silver and Chromium. Key Engineering Materials, 2000, 188, 37-44.	0.4	5
66	Mechanical characterisation of TiN/ZrN multi-layered coatings. Journal of Materials Processing Technology, 1999, 92-93, 177-183.	3.1	33
67	The influence of ductile interlayers on the mechanical performance of tungsten nitride coatings. Journal of Materials Processing Technology, 1999, 92-93, 156-161.	3.1	26
68	Structure and properties of sputtered TiAl–M (M=Ag, Cr) thin films. Surface and Coatings Technology, 1999, 120-121, 297-302.	2.2	18
69	The influence of silver on the structure and mechanical properties of (TiAl)-based intermetallics. Thin Solid Films, 1999, 343-344, 43-46.	0.8	9
70	Joining of Superalloys to Intermetallics Using Nanolayers. Advanced Materials Research, 0, 59, 225-229.	0.3	39