
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/645566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of xanthan gum for whole cell immobilization and its impact in bioremediation - a review. Bioresource Technology, 2022, 351, 126918.	4.8	25
2	Non-steroidal anti-inflammatory drugs in the era of the Covid-19 pandemic in the context of the human and the environment. Science of the Total Environment, 2022, 834, 155317.	3.9	27
3	Xanthan gum as a carrier for bacterial cell entrapment: Developing a novel immobilised biocatalyst. Materials Science and Engineering C, 2021, 118, 111474.	3.8	9
4	Degradation of diclofenac by new bacterial strains and its influence on the physiological status of cells. Journal of Hazardous Materials, 2021, 403, 124000.	6.5	20
5	Investigation of the bacterial cell envelope nanomechanical properties after long-term exposure to nitrofurans. Journal of Hazardous Materials, 2021, 407, 124352.	6.5	12
6	Effect of Pseudomonas moorei KB4 Cells' Immobilisation on Their Degradation Potential and Tolerance towards Paracetamol. Molecules, 2021, 26, 820.	1.7	9
7	A comprehensive review on the influence of light on signaling cross-talk and molecular communication against phyto-microbiome interactions. Critical Reviews in Biotechnology, 2021, 41, 370-393.	5.1	9
8	Evaluation of cell wall-associated direct extracellular electron transfer in thermophilic Geobacillus sp 3 Biotech, 2021, 11, 383.	1.1	2
9	Naproxen in the environment: its occurrence, toxicity to nontarget organisms and biodegradation. Applied Microbiology and Biotechnology, 2020, 104, 1849-1857.	1.7	88
10	Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds. Molecules, 2020, 25, 4473.	1.7	12
11	Evaluation of the physico-chemical properties of hydrocarbons-exposed bacterial biomass. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111310.	2.5	3
12	Diclofenac Degradation—Enzymes, Genetic Background and Cellular Alterations Triggered in Diclofenac-Metabolizing Strain Pseudomonas moorei KB4. International Journal of Molecular Sciences, 2020, 21, 6786.	1.8	17
13	Enhanced Degradation of Naproxen by Immobilization of Bacillus thuringiensis B1(2015b) on Loofah Sponge. Molecules, 2020, 25, 872.	1.7	18
14	A whole-cell immobilization system on bacterial cellulose for the paracetamol-degrading Pseudomonas moorei KB4 strain. International Biodeterioration and Biodegradation, 2020, 149, 104919.	1.9	26
15	Three chlorotoluene-degrading bacterial strains: Differences in biodegradation potential and cell surface properties. Chemosphere, 2019, 237, 124452.	4.2	5
16	A new pathway for naproxen utilisation by Bacillus thuringiensis B1(2015b) and its decomposition in the presence of organic and inorganic contaminants. Journal of Environmental Management, 2019, 239, 1-7.	3.8	19
17	Naproxen ecotoxicity and biodegradation by Bacillus thuringiensis B1(2015b) strain. Ecotoxicology and Environmental Safety, 2019, 167, 505-512.	2.9	45
18	Biodegradation of Non-steroidal Anti-inflammatory Drugs and Their Influence on Soil Microorganisms. Microorganisms for Sustainability, 2019, , 379-401.	0.4	6

#	Article	IF	CITATIONS
19	Paracetamol $\hat{a} \in \hat{a}$ toxicity and microbial utilization. Pseudomonas moorei KB4 as a case study for exploring degradation pathway. Chemosphere, 2018, 206, 192-202.	4.2	92
20	Fluorescein Diacetate Hydrolysis Using the Whole Biofilm as a Sensitive Tool to Evaluate the Physiological State of Immobilized Bacterial Cells. Catalysts, 2018, 8, 434.	1.6	24
21	Immobilization of Planococcus sp. S5 Strain on the Loofah Sponge and Its Application in Naproxen Removal. Catalysts, 2018, 8, 176.	1.6	26
22	Organic micropollutants paracetamol and ibuprofen—toxicity, biodegradation, and genetic background of their utilization by bacteria. Environmental Science and Pollution Research, 2018, 25, 21498-21524.	2.7	168
23	Hydrocarbon-induced changes in proteins and fatty acids profiles of Raoultella ornithinolytica M03. Journal of Proteomics, 2017, 164, 43-51.	1.2	4
24	Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1(2015b). Environmental Science and Pollution Research, 2017, 24, 7572-7584.	2.7	51
25	Impact of potent bioremediation enhancing plant extracts on Raoultella ornithinolytica properties. Ecotoxicology and Environmental Safety, 2017, 145, 274-282.	2.9	4
26	Dynamics of ibuprofen biodegradation by Bacillus sp. B1(2015b). Archives of Environmental Protection, 2017, 43, 60-64.	1.1	3
27	Exploring the Degradation of Ibuprofen by Bacillus thuringiensis B1(2015b): The New Pathway and Factors Affecting Degradation. Molecules, 2017, 22, 1676.	1.7	49
28	Stenotrophomonas maltophilia: A Gram-Negative Bacterium Useful for Transformations of Flavanone and Chalcone. Molecules, 2017, 22, 1830.	1.7	14
29	Metabolic Responses of Bacterial Cells to Immobilization. Molecules, 2016, 21, 958.	1.7	120
30	Bacillus thuringiensis B1(2015b) is a Gram-Positive Bacteria Able to Degrade Naproxen and Ibuprofen. Water, Air, and Soil Pollution, 2016, 227, 197.	1.1	82
31	Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 2016, 23, 28-36.	1.2	289
32	Toxicity of Diclofenac and its Biotransformation by Raoultella sp. DD4. Polish Journal of Environmental Studies, 2016, 25, 2211-2216.	0.6	17
33	Enzymes Involved in Naproxen Degradation by <i>Planococcus</i> sp. S5. Polish Journal of Microbiology, 2016, 65, 177-182.	0.6	16
34	Bacterial properties changing under Triton X-100 presence in the diesel oil biodegradation systems: from surface and cellular changes to mono- and dioxygenases activities. Environmental Science and Pollution Research, 2015, 22, 4305-4315.	2.7	11
35	Biodegradation and biotransformation of polycyclic non-steroidal anti-inflammatory drugs. Reviews in Environmental Science and Biotechnology, 2015, 14, 229-239.	3.9	58
36	Rahnella sp. strain EK12: Cell surface properties and diesel oil biodegradation after long-term contact with natural surfactants and diesel oil. Microbiological Research, 2015, 176, 38-47.	2.5	30

#	Article	IF	CITATIONS
37	Cometabolic Degradation of Naproxen by Planococcus sp. Strain S5. Water, Air, and Soil Pollution, 2015, 226, 297.	1.1	43
38	A single amino acid substitution within catalytically non-active N-terminal domain of catechol 2,3-dioxygenase (C23O) increases enzyme activity towards 4-chlorocatechol. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 64-71.	1.8	3
39	Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment—Sources, Risks, Biodegradation. Water, Air, and Soil Pollution, 2015, 226, 355.	1.1	38
40	Activity of a Carboxyl-Terminal Truncated Form of Catechol 2,3-Dioxygenase from <i>Planococcus</i> sp. S5. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	3
41	Degradation Potential of Protocatechuate 3,4-Dioxygenase from Crude Extract of <i>Stenotrophomonas maltophilia</i> Strain KB2 Immobilized in Calcium Alginate Hydrogels and on Glyoxyl Agarose. BioMed Research International, 2014, 2014, 1-8.	0.9	31
42	Protocatechuate 3,4-Dioxygenase: A Wide Substrate Specificity Enzyme Isolated from <i>Stenotrophomonas maltophilia</i> KB2 as a Useful Tool in Aromatic Acid Biodegradation. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 150-160.	1.0	9
43	Bacterial degradation of naproxen – Undisclosed pollutant in the environment. Journal of Environmental Management, 2014, 145, 157-161.	3.8	86
44	Enhancement of biodegradation potential of catechol 1,2-dioxygenase through its immobilization in calcium alginate gel. Electronic Journal of Biotechnology, 2014, 17, 83-88.	1.2	41
45	Immobilization as a Strategy for Improving Enzyme Properties-Application to Oxidoreductases. Molecules, 2014, 19, 8995-9018.	1.7	415
46	Altering substrate specificity of catechol 2,3-dioxygenase from Planococcus sp. strain S5 by random mutagenesis. Acta Biochimica Polonica, 2014, 61, 705-10.	0.3	0
47	The impact of long-term contact of Achromobacter sp. 4(2010) with diesel oil – Changes in biodegradation, surface properties and hexadecane monooxygenase activity. International Biodeterioration and Biodegradation, 2013, 78, 7-16.	1.9	31
48	High activity catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 as a useful tool in cis,cis-muconic acid production. Antonie Van Leeuwenhoek, 2013, 103, 1297-1307.	0.7	48
49	Biodegradation of alkyl derivatives of aromatic hydrocarbons and cell surface properties of a strain of Pseudomonas stutzeri. Chemosphere, 2013, 90, 471-478.	4.2	32
50	Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. World Journal of Microbiology and Biotechnology, 2013, 29, 267-273.	1.7	22
51	Cell surface properties and fatty acids composition of Stenotrophomonas maltophilia under the influence of hydrophobic compounds and surfactants. New Biotechnology, 2013, 30, 173-182.	2.4	36
52	Cloning and Mutagenesis of Catechol 2,3-Dioxygenase Gene from the Gram-Positive <i>Planococcus</i> sp. Strain S5. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 381-390.	1.0	5
53	Factors affecting activity of catechol 2,3-dioxygenase from 2-chlorophenol-degrading <i>Stenotrophomonas maltophilia</i> strain KB2. Biocatalysis and Biotransformation, 2013, 31, 141-147.	1.1	21
54	Flavin-Dependent Enzymes in Cancer Prevention. International Journal of Molecular Sciences, 2012, 13, 16751-16768.	1.8	18

#	Article	IF	CITATIONS
55	Properties of catechol 2,3-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels. Biochemical Engineering Journal, 2012, 66, 1-7.	1.8	49
56	Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration Acta Biochimica Polonica, 2012, 59, .	0.3	45
57	Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration. Acta Biochimica Polonica, 2012, 59, 345-51.	0.3	12
58	High activity catechol 2,3-dioxygenase from the cresols – Degrading Stenotrophomonas maltophilia strain KB2. International Biodeterioration and Biodegradation, 2011, 65, 853-858.	1.9	36
59	Induction of aromatic ring: cleavage dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems. World Journal of Microbiology and Biotechnology, 2011, 27, 805-811.	1.7	48
60	A comparative study of biodegradation of vinyl acetate by environmental strains. Annals of Microbiology, 2011, 61, 257-265.	1.1	6
61	Catechol 1,2-dioxygenase from the new aromatic compounds – Degrading Pseudomonas putida strain N6. International Biodeterioration and Biodegradation, 2011, 65, 504-512.	1.9	53
62	Modulation of FAD-dependent monooxygenase activity from aromatic compounds-degrading Stenotrophomonas maltophilia strain KB2 Acta Biochimica Polonica, 2011, 58, .	0.3	7
63	Modulation of FAD-dependent monooxygenase activity from aromatic compounds-degrading Stenotrophomonas maltophilia strain KB2. Acta Biochimica Polonica, 2011, 58, 421-6.	0.3	5
64	Enhanced biotransformation of mononitrophenols by Stenotrophomonas maltophilia KB2 in the presence of aromatic compounds of plant origin. World Journal of Microbiology and Biotechnology, 2010, 26, 289-295.	1.7	50
65	Intradiol Dioxygenases â \in " The Key Enzymes in Xenobiotics Degradation. , 0, , .		25
66	Bacillus thuringiensis B1(2015b) is a Gram-Positive Bacteria Able to Degrade Naproxen and Ibuprofen. , 0, .		1