Selena M Sagan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6455518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3193-3198.	7.1	268
2	Analysis of the T Cell Response to Zika Virus and Identification of a Novel CD8+ T Cell Epitope in Immunocompetent Mice. PLoS Pathogens, 2017, 13, e1006184.	4.7	126
3	Beyond the seed: structural basis for supplementary micro <scp>RNA</scp> targeting by human Argonaute2. EMBO Journal, 2019, 38, e101153.	7.8	105
4	Peroxisome Proliferator-Activated Receptor α Antagonism Inhibits Hepatitis C Virus Replication. Chemistry and Biology, 2006, 13, 23-30.	6.0	94
5	Bioinformatic and Physical Characterizations of Genome-Scale Ordered RNA Structure in Mammalian RNA Viruses. Journal of Virology, 2008, 82, 11824-11836.	3.4	93
6	The Diverse Roles of microRNAs at the Host–Virus Interface. Viruses, 2018, 10, 440.	3.3	87
7	The influence of cholesterol and lipid metabolism on host cell structure and hepatitis C virus replication. Biochemistry and Cell Biology, 2006, 84, 67-79.	2.0	71
8	Dissecting noncoding and pathogen RNA–protein interactomes. Rna, 2015, 21, 135-143.	3.5	71
9	The miR-17 â^1⁄4 92 microRNA Cluster Is a Global Regulator of Tumor Metabolism. Cell Reports, 2016, 16, 1915-1928.	6.4	58
10	Direct imaging of the disruption of hepatitis C virus replication complexes by inhibitors of lipid metabolism. Virology, 2009, 394, 130-142.	2.4	57
11	miR-122 does not impact recognition of the HCV genome by innate sensors of RNA but rather protects the 5′ end from the cellular pyrophosphatases, DOM3Z and DUSP11. Nucleic Acids Research, 2018, 46, 5139-5158.	14.5	53
12	Unraveling the Mysterious Interactions Between Hepatitis C Virus RNA and Liver-Specific MicroRNA-122. Annual Review of Virology, 2016, 3, 309-332.	6.7	50
13	miR-122 and Ago interactions with the HCV genome alter the structure of the viral 5′ terminus. Nucleic Acids Research, 2019, 47, 5307-5324.	14.5	50
14	Molecular Determinants of Flavivirus Virion Assembly. Trends in Biochemical Sciences, 2021, 46, 378-390.	7.5	42
15	cis-Acting RNA elements in the hepatitis C virus RNA genome. Virus Research, 2015, 206, 90-98.	2.2	35
16	Transcriptional profiling of the effects of 25-hydroxycholesterol on human hepatocyte metabolism and the antiviral state it conveys against the hepatitis C virus. BMC Chemical Biology, 2009, 9, 2.	1.6	31
17	Hepatitis C virus and human miR-122: insights from the bench to the clinic. Current Opinion in Virology, 2014, 7, 11-18.	5.4	29
18	Higher Cytopathic Effects of a Zika Virus Brazilian Isolate from Bahia Compared to a Canadian-Imported Thai Strain. Viruses, 2018, 10, 53.	3.3	29

Selena M Sagan

#	Article	IF	CITATIONS
19	Zika Virus: Emergence, Phylogenetics, Challenges, and Opportunities. ACS Infectious Diseases, 2016, 2, 763-772.	3.8	25
20	Neuronal microRNA regulation in Experimental Autoimmune Encephalomyelitis. Scientific Reports, 2018, 8, 13437.	3.3	24
21	Effects of pH and salt concentration on the siRNA binding activity of the RNA silencing suppressor protein p19. FEBS Letters, 2007, 581, 3051-3056.	2.8	23
22	Modulation of GB Virus B RNA Abundance by MicroRNA-122: Dependence on and Escape from MicroRNA-122 Restriction. Journal of Virology, 2013, 87, 7338-7347.	3.4	22
23	Studies of the Interaction of the Viral Suppressor of RNA Silencing Protein p19 with Small RNAs Using Fluorescence Polarization. Biochemistry, 2008, 47, 8130-8138.	2.5	21
24	Combating Hepatitis C Virus by Targeting MicroRNA-122 Using Locked Nucleic Acids. Current Gene Therapy, 2012, 12, 301-306.	2.0	20
25	Inhibition of siRNA Binding to a p19 Viral Suppressor of RNA Silencing by Cysteine Alkylation. Angewandte Chemie - International Edition, 2007, 46, 2005-2009.	13.8	19
26	The Efficacy of siRNAs against Hepatitis C Virus Is Strongly Influenced by Structure and Target Site Accessibility. Chemistry and Biology, 2010, 17, 515-527.	6.0	18
27	RNAi, Antiviral After All. Science, 2013, 342, 207-208.	12.6	18
28	Contemporary Zika Virus Isolates Induce More dsRNA and Produce More Negative-Strand Intermediate in Human Astrocytoma Cells. Viruses, 2018, 10, 728.	3.3	16
29	Enhancement of hepatitis C viral RNA abundance by precursor miR-122 molecules. Rna, 2013, 19, 1825-1832.	3.5	15
30	Stabilized recombinant suppressors of RNA silencing: Functional effects of linking monomers of Carnation Italian Ringspot virus p19. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1528-1535.	2.3	14
31	Cysteine residues of Carnation Italian Ringspot virus p19 suppressor of RNA silencing maintain global structural integrity and stability for siRNA binding. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1197-1203.	2.3	14
32	miR-122–based therapies select for three distinct resistance mechanisms based on alterations in RNA structure. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
33	Studies of a viral suppressor of RNA silencing p19-CFP fusion protein: A FRET-based probe for sensing double-stranded fluorophore tagged small RNAs. Biophysical Chemistry, 2009, 143, 166-169.	2.8	11
34	A Complex Network of Interactions between S282 and G283 of Hepatitis C Virus Nonstructural Protein 5B and the Template Strand Affects Susceptibility to Sofosbuvir and Ribavirin. Antimicrobial Agents and Chemotherapy, 2016, 60, 2018-2027.	3.2	11
35	Virus discovery reveals frequent infection by diverse novel members of the Flaviviridae in wild lemurs. Archives of Virology, 2019, 164, 509-522.	2.1	11
36	Sandfly Fever Sicilian Virus-Leishmania major co-infection modulates innate inflammatory response favoring myeloid cell infections and skin hyperinflammation. PLoS Neglected Tropical Diseases, 2021, 15, e0009638.	3.0	11

Selena M Sagan

#	Article	IF	CITATIONS
37	Beyond sites 1 and 2, miR-122 target sites in the HCV genome have negligible contributions to HCV RNA accumulation in cell culture. Journal of General Virology, 2019, 100, 217-226.	2.9	9
38	Plasmacytoid dendritic cells as guardians in hepatitis C virus–infected liver. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7625-7626.	7.1	7
39	Hepatitis C Contamination of Medication Vials Accessed with Sterile Needles and Syringes. Anesthesiology, 2019, 131, 305-314.	2.5	6
40	Poly(rC)-Binding Protein 1 Limits Hepatitis C Virus Virion Assembly and Secretion. Viruses, 2022, 14, 291.	3.3	5
41	6th Canadian Symposium on Hepatitis C Virus: Delivering a cure for hepatitis C infection—What are the remaining gaps?. Canadian Liver Journal, 2018, 1, 94-105.	0.9	4
42	A survey of medication preparation and administration practices among members of the Canadian Anesthesiologists' Society. Canadian Journal of Anaesthesia, 2018, 65, 1100-1109.	1.6	4
43	Effectiveness of germicidal ultraviolet light to inactivate coronaviruses on personal protective equipment to reduce nosocomial transmission. Infection Control and Hospital Epidemiology, 2021, , 1-6.	1.8	4
44	The 7th Canadian Symposium on Hepatitis C Virus: "Toward Elimination of HCV: How to Get There― Canadian Liver Journal, 2018, 1, 139-152.	0.9	3
45	A highly sensitive strand-specific multiplex RT-qPCR assay for quantitation of Zika virus replication. Journal of Virological Methods, 2022, 307, 114556.	2.1	2
46	Design and Screening of siRNAs Against Highly Structured RNA Targets. Methods in Molecular Biology, 2013, 942, 69-86.	0.9	1
47	The 8th Canadian Symposium on Hepatitis C virus: "Improving diagnosis and linkage to care― Canadian Liver Journal, 2020, 3, 3-14.	0.9	1
48	Zika virus infection: induction, restriction and evasion of host interferon responses. Future Virology, 2017, 12, 627-630.	1.8	0
49	A Moonlighting microRNA: Mechanism(s) of miR-122-Mediated Viral RNA Accumulation. Proceedings (mdpi), 2020, 50, .	0.2	Ο