Christian Fuerst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6455248/publications.pdf

Version: 2024-02-01

759233 794594 21 643 12 19 citations h-index g-index papers 21 21 21 709 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Synthetic fibers and thermoplastic short-fiber-reinforced polymers: Properties and characterization. Polymer Composites, 2014, 35, 227-236.	4.6	111
2	Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites. Composites Science and Technology, 2015, 108, 41-47.	7.8	111
3	Differences in the flame retardant mechanism of melamine cyanurate in polyamide 6 and polyamide 66. Polymer Degradation and Stability, 2002, 78, 219-224.	5.8	106
4	Effects of different fibers on the properties of short-fiber-reinforced polypropylene composites. Composites Science and Technology, 2014, 103, 49-55.	7.8	67
5	Nucleating efficiency and thermal stability of industrial non-purified lignins and ultrafine talc in poly(lactic acid) (PLA). Polymer Degradation and Stability, 2017, 142, 244-254.	5.8	43
6	Impact of fiber length and fiber content on the mechanical properties and electrical conductivity of short carbon fiber reinforced polypropylene composites. Composites Science and Technology, 2020, 188, 107998.	7.8	40
7	Investigation on the thermo-oxidative stability of carbon fiber sizings for application in thermoplastic composites. Polymer Degradation and Stability, 2016, 125, 33-42.	5.8	30
8	Electrically conductive kraft lignin-based carbon filler for polymers. Carbon, 2015, 89, 161-168.	10.3	22
9	Viscoseâ€based porous carbon fibers: improving yield and porosity through optimization of the carbonization process by design of experiment. Journal of Porous Materials, 2021, 28, 727-739.	2.6	17
10	Determination of the surface chemistry of ozone-treated carbon fibers by highly consistent evaluation of X-ray photoelectron spectra. Carbon, 2019, 146, 97-105.	10.3	17
11	Carbon Microparticles from Organosolv Lignin as Filler for Conducting Poly(Lactic Acid). Polymers, 2016, 8, 205.	4.5	14
12	Supercapacitor Electrodes from Viscose-Based Activated Carbon Fibers: Significant Yield and Performance Improvement Using Diammonium Hydrogen Phosphate as Impregnating Agent. Journal of Carbon Research, 2020, 6, 17.	2.7	14
13	Novel protocol for highly efficient gas-phase chemical derivatization of surface amine groups using trifluoroacetic anhydride. Applied Surface Science, 2018, 443, 244-254.	6.1	10
14	Viscose-derived activated carbons as adsorbents for malathion, dimethoate, and chlorpyrifos—screening, trends, and analysis. Environmental Science and Pollution Research, 2022, 29, 35138-35149.	5 . 3	9
15	Viscose-Derived Activated Carbons Fibers as Highly Efficient Adsorbents for Dimethoate Removal from Water. Molecules, 2022, 27, 1477.	3.8	8
16	Influence of the carbonization temperature on the properties of carbon fibers based on technical softwood kraft lignin blends. Carbon Trends, 2021, 5, 100094.	3.0	7
17	Biomass-Derived Carbons as Versatile Materials for Energy-Related Applications: Capacitive Properties vs. Oxygen Reduction Reaction Catalysis. Journal of Carbon Research, 2021, 7, 55.	2.7	6
18	Comparative Behavior of Viscose-Based Supercapacitor Electrodes Activated by KOH, H2O, and CO2. Nanomaterials, 2022, 12, 677.	4.1	5

#	Article	IF	CITATIONS
19	Screening of spinning oils for meltâ€spun ligninâ€based carbon fiber precursors. Journal of Applied Polymer Science, 0, , 52134.	2.6	4
20	Development of a method for vapour phase trimethylsilylation of surface hydroxyl groups. Surfaces and Interfaces, 2021, 23, 100957.	3.0	2
21	Morphology and Characterisation of Novolac–LDPE-Based Mixtures as Matrix for Injection Moulded Green Bodies for Bio-Based SiC Ceramics. Ceramics, 2019, 2, 536-550.	2.6	0