
Yong Dong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6454955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reaction Mechanisms of Histidine and Carnosine with Hypochlorous Acid Along with Chlorination Reactivity of N-Chlorinated Intermediates: A Computational Study. Chemical Research in Toxicology, 2022, 35, 750-759.	3.3	4
2	Transformation mechanisms of acetaldehyde and its substituted aldehydes into the corresponding nitriles and (N-chloro)amides during chloramination: A computational study. Science of the Total Environment, 2022, 836, 155592.	8.0	2
3	Formation mechanism of chloropicrin from amines and free amino acids during chlorination: A combined computational and experimental study. Journal of Hazardous Materials, 2021, 416, 125819.	12.4	13
4	Degradation mechanisms of simple aliphatic amines under ozonation: a DFT study. Environmental Sciences: Processes and Impacts, 2021, 23, 480-490.	3.5	6
5	In vivo toxicity of nitroaromatic compounds to rats: QSTR modelling and interspecies toxicity relationship with mouse. Journal of Hazardous Materials, 2020, 399, 122981.	12.4	31
6	Reinvestigation of NDMA formation mechanisms from tertiary amines during chloramination: a DFT study. Environmental Science: Water Research and Technology, 2020, 6, 2078-2088.	2.4	3
7	Degradation Mechanisms and Substituent Effects of <i>N</i> -Chloro-α-Amino Acids: A Computational Study. Environmental Science & Technology, 2020, 54, 2635-2645.	10.0	18
8	Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods. Ecotoxicology and Environmental Safety, 2019, 186, 109822.	6.0	39
9	The formation mechanism of chloropicrin from methylamine during chlorination: a DFT study. Environmental Sciences: Processes and Impacts, 2019, 21, 761-770.	3.5	9
10	NDMA formation mechanisms from typical hydrazines and hydrazones during ozonation: A computational study. Journal of Hazardous Materials, 2019, 366, 370-377.	12.4	12
11	Theoretical Investigation of the Gas-Phase S _N 2 Reactions of Anionic and Neutral Nucleophiles with Chloramines. Journal of Physical Chemistry A, 2018, 122, 3045-3056.	2.5	4
12	Comparison of N-nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study. Journal of Hazardous Materials, 2017, 321, 362-370.	12.4	26
13	1,1â€Dilithioethylene: Toward Spectroscopic Identification of the Definitive Singlet Ground Electronic State of a Peculiar Structure. ChemPhysChem, 2016, 17, 1623-1629.	2.1	2
14	Effects of heavy metal ions on N-nitrosodimethylamine (NDMA) formation. RSC Advances, 2016, 6, 70474-70479.	3.6	1
15	Development of a Biomimetic Chondroitin Sulfate-modified Hydrogel to Enhance the Metastasis of Tumor Cells. Scientific Reports, 2016, 6, 29858.	3.3	20
16	Experimental and Theoretical Investigation of Effects of Ethanol and Acetic Acid on Carcinogenic NDMA Formation in Simulated Gastric Fluid. Journal of Physical Chemistry A, 2016, 120, 4505-4513.	2.5	1
17	Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study. Journal of Inorganic Biochemistry, 2015, 150, 126-132.	3.5	7
18	Prototypical metal–oxo bonds: the reactions of Cr(PF3)6, Fe(PF3)5, and Ni(PF3)4 with oxygen. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	0

Yong Dong Liu

#	Article	IF	CITATIONS
19	The reactions of Cr(CO) ₆ , Fe(CO) ₅ , and Ni(CO) ₄ with O ₂ yield viable oxoâ€metal carbonyls. Journal of Computational Chemistry, 2014, 35, 998-1009.	3.3	6
20	Formation Mechanism of NDMA from Ranitidine, Trimethylamine, and Other Tertiary Amines during Chloramination: A Computational Study. Environmental Science & Technology, 2014, 48, 8653-8663.	10.0	72
21	Does the metala€ metal sextuple bond exist in the bimetallic sandwich compounds Cr ₂ (C ₆ H ₆) ₂ , Mo ₂ (C ₆ H ₆) ₂ , and W ₂ (C ₆ H ₆) ₂ ??sup>â€. Molecular Physics, 2013,	1.7	11
22	The Influence of Phosphate Buffer on the Formation of N-Nitrosodimethylamine from Dimethylamine Nitrosation. Journal of Chemistry, 2013, 2013, 1-9.	1.9	4
23	Theoretical investigation of reactivities of amines in the N-nitrosation reactions by N2O3. Journal of Molecular Modeling, 2011, 17, 669-680.	1.8	9
24	Notice of Retraction: A Comparative Investigation of the Nitrosodimethylamine Formation from the Nitrosation of Dimethylamine and Trimethylamine by Nitrite under the Neutral Condition. , 2011, , .		0
25	Theoretical investigation of the isomerization and dissociation reactions of all the HOONO2 isomers. Computational and Theoretical Chemistry, 2010, 959, 42-48.	1.5	1
26	Theoretical Investigation of N-Nitrosation Mechanism of Amino Acids Mediated by N2O3. , 2009, , .		1
27	Theoretical investigation of mono- and bi-function alkylating agents transformed from nitrosodimethylamine derivatives. Computational and Theoretical Chemistry, 2009, 893, 106-110.	1.5	5
28	Structure–activity relationship of nitrosating agents in the nitrosation reactions of ammonia: a theoretical study. Theoretical Chemistry Accounts, 2009, 124, 261-268.	1.4	9
29	Theoretical investigation of the isomerization of N2O3 and the N-nitrosation of dimethylamine by asym-N2O3, sym-N2O3, and trans–cis N2O3 isomers. Computational and Theoretical Chemistry, 2009, 908, 107-113.	1.5	15
30	THEORETICAL STUDY ON INTERNAL ROTATION OF NITROSOUREAS AND TOXICOLOGICAL ANALYSIS. Journal of Theoretical and Computational Chemistry, 2007, 06, 245-253.	1.8	6
31	Theoretical studies on the formation of N-nitrosodimethylamine. Computational and Theoretical Chemistry, 2007, 802, 1-6.	1.5	23
32	Theoretical investigation of the decomposition mechanisms of N-(2-chloroethyl)-N-nitrosourea. Theoretical Chemistry Accounts, 2007, 118, 973-978.	1.4	3