
Zheng-Long Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6454891/publications.pdf Version: 2024-02-01

ZHENC-LONC XII

#	Article	IF	CITATIONS
1	Lithiophilic Mo3N2/MoN as multifunctional interlayer for dendrite-free and ultra-stable lithium metal batteries. Journal of Colloid and Interface Science, 2022, 612, 332-341.	9.4	6
2	Regulating Li uniform deposition by lithiophilic interlayer as Li-ion redistributor for highly stable lithium metal batteries. Chemical Engineering Journal, 2022, 436, 134945.	12.7	24
3	Ultrastable and High Energy Calcium Rechargeable Batteries Enabled by Calcium Intercalation in a NASICON Cathode. Small, 2022, 18, e2107853.	10.0	12
4	Advanced electrode materials for nonaqueous calcium rechargeable batteries. Journal of Materials Chemistry A, 2021, 9, 11908-11930.	10.3	22
5	Recent Advances on Electrospun Nanofiber Materials for Post-lithium Ion Batteries. Advanced Fiber Materials, 2021, 3, 275-301.	16.1	62
6	A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries. Nature Communications, 2021, 12, 3369.	12.8	59
7	Nanostructure-Mediated Phase Evolution in Lithiation/Delithiation of Co ₃ O ₄ . ACS Applied Materials & Interfaces, 2021, 13, 28171-28180.	8.0	14
8	Multi-scale uniform Li regulation triggered by tunable electric field distribution on oxygen-functionalized porous framework for flexible Li-S full batteries. Energy Storage Materials, 2021, 42, 68-77.	18.0	41
9	Stable and Highâ€Power Calciumâ€lon Batteries Enabled by Calcium Intercalation into Graphite. Advanced Materials, 2020, 32, e1904411.	21.0	87
10	Boosting the anchoring and catalytic capability of MoS ₂ for high-loading lithium sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 17646-17656.	10.3	33
11	<i>In Situ</i> Phase Transformation on Nickel-Based Selenides for Enhanced Hydrogen Evolution Reaction in Alkaline Medium. ACS Energy Letters, 2020, 5, 2483-2491.	17.4	124
12	Calciumâ€lon Batteries: Stable and Highâ€Power Calciumâ€lon Batteries Enabled by Calcium Intercalation into Graphite (Adv. Mater. 4/2020). Advanced Materials, 2020, 32, 2070029.	21.0	3
13	Partially graphitic hierarchical porous carbon nanofiber for high performance supercapacitors and lithium ion batteries. Journal of Power Sources, 2020, 462, 228098.	7.8	42
14	Solvated Ion Intercalation in Graphite: Sodium and Beyond. Frontiers in Chemistry, 2020, 8, 432.	3.6	45
15	Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries. Energy and Environmental Science, 2019, 12, 3144-3155.	30.8	104
16	Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nature Communications, 2019, 10, 2598.	12.8	195
17	Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries. Nanoscale, 2019, 11, 10984-10991.	5.6	55
18	Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium-sulfur batteries. Carbon, 2019, 141, 16-24.	10.3	54

ZHENG-LONG XU

#	Article	IF	CITATIONS
19	Graphitic Carbon Materials for Advanced Sodiumâ€lon Batteries. Small Methods, 2019, 3, 1800227.	8.6	81
20	Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium-sulfur batteries. Electrochimica Acta, 2018, 268, 1-9.	5.2	61
21	Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today, 2018, 19, 84-107.	11.9	365
22	Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochimica Acta, 2018, 271, 507-518.	5.2	42
23	Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nature Communications, 2018, 9, 4164.	12.8	304
24	Co Nanoparticles Encapsulated in Porous N-Doped Carbon Nanofibers as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2018, 165, J3271-J3275.	2.9	26
25	Engineering Solid Electrolyte Interphase for Pseudocapacitive Anatase TiO ₂ Anodes in Sodiumâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1802099.	14.9	106
26	In Situ TEM Study of Volume Expansion in Porous Carbon Nanofiber/Sulfur Cathodes with Exceptional Highâ€Rate Performance. Advanced Energy Materials, 2017, 7, 1602078.	19.5	93
27	Heterogeneous, mesoporous NiCo ₂ O ₄ –MnO ₂ /graphene foam for asymmetric supercapacitors with ultrahigh specific energies. Journal of Materials Chemistry A, 2017, 5, 3547-3557.	10.3	106
28	Porous RuO2 nanosheet/CNT electrodes for DMSO-based Li-O2 and Li ion O2 batteries. Energy Storage Materials, 2017, 8, 110-118.	18.0	36
29	Atomic scale, amorphous FeOx/carbon nanofiber anodes for Li-ion and Na-ion batteries. Energy Storage Materials, 2017, 8, 10-19.	18.0	78
30	Lithium–Sulfur Battery Cable Made from Ultralight, Flexible Graphene/Carbon Nanotube/Sulfur Composite Fibers. Advanced Functional Materials, 2017, 27, 1604815.	14.9	176
31	Unveiling the Unique Phase Transformation Behavior and Sodiation Kinetics of 1D van der Waals Sb ₂ S ₃ Anodes for Sodium Ion Batteries. Advanced Energy Materials, 2017, 7, 1602149.	19.5	152
32	Nanosilicon anodes for high performance rechargeable batteries. Progress in Materials Science, 2017, 90, 1-44.	32.8	172
33	Anomalous Enhancement of Liâ€O ₂ Battery Performance with Li ₂ O ₂ Films Assisted by NiFeO <i>_x</i> Nanofiber Catalysts: Insights into Morphology Control. Advanced Functional Materials, 2016, 26, 8290-8299.	14.9	47
34	Three-Dimensional Porous Graphene Aerogel Cathode with High Sulfur Loading and Embedded TiO ₂ Nanoparticles for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 28663-28670.	8.0	100
35	Enhanced conversion reaction kinetics in low crystallinity SnO ₂ /CNT anodes for Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10964-10973.	10.3	111
36	Study of lithiation mechanisms of high performance carbon-coated Si anodes by in-situ microscopy. Energy Storage Materials, 2016, 3, 45-54.	18.0	47

ZHENG-LONG XU

#	Article	IF	CITATIONS
37	Electrospun graphitic carbon nanofibers with in-situ encapsulated Co–Ni nanoparticles as freestanding electrodes for Li–O2 batteries. Carbon, 2016, 100, 329-336.	10.3	79
38	Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. Journal of Materials Chemistry A, 2016, 4, 6098-6106.	10.3	81
39	NiCo2O4/CNT nanocomposites as bi-functional electrodes for Li ion batteries and supercapacitors. Carbon, 2016, 102, 262-272.	10.3	127
40	Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon, 2016, 99, 624-632.	10.3	246
41	Electrospun Carbon Nanofibers with in Situ Encapsulated Co ₃ O ₄ Nanoparticles as Electrodes for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 13503-13511.	8.0	199
42	Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium–sulfur batteries. Journal of Power Sources, 2015, 285, 43-50.	7.8	178
43	Controlled synthesis of cobalt carbonate/graphene composites with excellent supercapacitive performance and pseudocapacitive characteristics. Journal of Materials Chemistry A, 2015, 3, 17827-17836.	10.3	48
44	In-situ TEM examination and exceptional long-term cyclic stability of ultrafine Fe3O4 nanocrystal/carbon nanofiber composite electrodes. Energy Storage Materials, 2015, 1, 25-34.	18.0	46
45	Correlation Between Atomic Structure and Electrochemical Performance of Anodes Made from Electrospun Carbon Nanofiber Films. Advanced Energy Materials, 2014, 4, 1301448.	19.5	133
46	Electrospun carbon nanofiber anodes containing monodispersed Si nanoparticles and graphene oxide with exceptional high rate capacities. Nano Energy, 2014, 6, 27-35.	16.0	125
47	Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst. Nano Energy, 2014, 4, 88-96.	16.0	94
48	Nanocavity-engineered Si/multi-functional carbon nanofiber composite anodes with exceptional high-rate capacities. Journal of Materials Chemistry A, 2014, 2, 17944-17951.	10.3	42
49	Insitu grown graphitic carbon/Fe ₂ O ₃ /carbon nanofiber composites for high performance freestanding anodes in Li-ion batteries. RSC Advances, 2014, 4, 12298-12301.	3.6	29
50	Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 18971-18980.	8.0	135
51	Carbon nanofibers containing Si nanoparticles and graphene-covered Ni for high performance anodes in Li ion batteries. RSC Advances, 2014, 4, 22359-22366.	3.6	37
52	Co ₃ O ₄ /porous electrospun carbon nanofibers as anodes for high performance Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16939-16944.	10.3	115
53	Free-standing Ni mesh with in-situ grown MnO2 nanoparticles as cathode for Li–air batteries. Solid State Ionics, 2014, 262, 197-201.	2.7	12
54	Liâ€ion Reaction to Improve the Rate Performance of Nanoporous Anatase TiO ₂ Anodes. Energy Technology, 2013, 1, 668-674.	3.8	30