Martin HÃ,j

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6454535/publications.pdf

Version: 2024-02-01

304368 395343 1,157 40 22 33 h-index citations g-index papers 40 40 40 1413 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Using Transient XAS to Detect Minute Levels of Reversible S-O Exchange at the Active Sites of MoS ₂ -Based Hydrotreating Catalysts: Effect of Metal Loading, Promotion, Temperature, and Oxygenate Reactant. ACS Catalysis, 2022, 12, 633-647.	5.5	12
2	Hydroxyapatite supported molybdenum oxide catalyst for selective oxidation of methanol to formaldehyde: studies of industrial sized catalyst pellets. Catalysis Science and Technology, 2021, 11, 970-983.	2.1	4
3	A perspective on catalytic hydropyrolysis of biomass. Renewable and Sustainable Energy Reviews, 2021, 143, 110960.	8.2	38
4	Kinetic Modeling of Gas Phase Sugar Cracking to Glycolaldehyde and Other Oxygenates. ACS Sustainable Chemistry and Engineering, 2021, 9, 305-311.	3.2	10
5	Highly Stable Apatite Supported Molybdenum Oxide Catalysts for Selective Oxidation of Methanol to Formaldehyde: Structure, Activity and Stability. ChemCatChem, 2021, 13, 4954-4975.	1.8	6
6	A Review and Experimental Revisit of Alternative Catalysts for Selective Oxidation of Methanol to Formaldehyde. Catalysts, 2021, 11, 1329.	1.6	14
7	Effect of the catalyst in fluid bed catalytic hydropyrolysis. Catalysis Today, 2020, 355, 96-109.	2.2	22
8	Thermal Cracking of Sugars for the Production of Glycolaldehyde and Other Small Oxygenates. ChemSusChem, 2020, 13, 688-692.	3.6	28
9	Stability of Iron-Molybdate Catalysts for Selective Oxidation of Methanol to Formaldehyde: Influence of Preparation Method. Catalysis Letters, 2020, 150, 1434-1444.	1.4	13
10	Catalytic hydropyrolysis of biomass using supported CoMo catalysts $\hat{a} \in \text{``Effect of metal loading and support acidity. Fuel, 2020, 264, 116807.}$	3.4	22
11	Structural dynamics of an iron molybdate catalyst under redox cycling conditions studied with <i>in situ</i> i> multi edge XAS and XRD. Physical Chemistry Chemical Physics, 2020, 22, 11713-11723.	1.3	25
12	Alkali Earth Metal Molybdates as Catalysts for the Selective Oxidation of Methanol to Formaldehydeâ€"Selectivity, Activity, and Stability. Catalysts, 2020, 10, 82.	1.6	15
13	Structure analysis of supported disordered molybdenum oxides using pair distribution function analysis and automated cluster modelling. Journal of Applied Crystallography, 2020, 53, 148-158.	1.9	18
14	<i>Operando</i> XAS/XRD and Raman Spectroscopic Study of Structural Changes of the Iron Molybdate Catalyst during Selective Oxidation of Methanol. ChemCatChem, 2019, 11, 4871-4883.	1.8	26
15	Deactivation of a CoMo Catalyst during Catalytic Hydropyrolysis of Biomass. Part 1. Product Distribution and Composition. Energy & Energy & 2019, 33, 12374-12386.	2.5	11
16	Catalytic Hydropyrolysis of Biomass Using Molybdenum Sulfide Based Catalyst. Effect of Promoters. Energy & Samp; Fuels, 2019, 33, 1302-1313.	2.5	24
17	Probing the Active Sites of MoS ₂ Based Hydrotreating Catalysts Using Modulation Excitation Spectroscopy. ACS Catalysis, 2019, 9, 2568-2579.	5 . 5	43
18	Hydrodeoxygenation (HDO) of Aliphatic Oxygenates and Phenol over NiMo/MgAl2O4: Reactivity, Inhibition, and Catalyst Reactivation. Catalysts, 2019, 9, 521.	1.6	12

#	Article	IF	CITATIONS
19	New insights into the effect of pressure on catalytic hydropyrolysis of biomass. Fuel Processing Technology, 2019, 193, 392-403.	3.7	25
20	Modeling of molybdenum transport and pressure drop increase in fixed bed reactors used for selective oxidation of methanol to formaldehyde using iron molybdate catalysts. Chemical Engineering Science, 2019, 202, 347-356.	1.9	11
21	The Influence of Active Phase Loading on the Hydrodeoxygenation (HDO) of Ethylene Glycol over Promoted MoS2/MgAl2O4 Catalysts. Topics in Catalysis, 2019, 62, 752-763.	1.3	4
22	Deactivation of a CoMo Catalyst during Catalytic Hydropyrolysis of Biomass. Part 2. Characterization of the Spent Catalysts and Char. Energy & Samp; Fuels, 2019, 33, 12387-12402.	2.5	10
23	Modeling of the molybdenum loss in iron molybdate catalyst pellets for selective oxidation of methanol to formaldehyde. Chemical Engineering Journal, 2019, 361, 1285-1295.	6.6	20
24	Hydrogen assisted catalytic biomass pyrolysis. Effect of temperature and pressure. Biomass and Bioenergy, 2018, 115, 97-107.	2.9	35
25	Influence of H 2 O and H 2 S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2 O 4 for hydrodeoxygenation of ethylene glycol. Applied Catalysis A: General, 2018, 551, 106-121.	2.2	31
26	Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 2018, 68, 268-309.	15.8	194
27	Deactivation behavior of an iron-molybdate catalyst during selective oxidation of methanol to formaldehyde. Catalysis Science and Technology, 2018, 8, 4626-4637.	2.1	32
28	The Effect of Pt Particle Size on the Oxidation of CO, C3H6, and NO Over Pt/Al2O3 for Diesel Exhaust Aftertreatment. Topics in Catalysis, 2017, 60, 1333-1344.	1.3	36
29	Bismuth Molybdate Catalysts Prepared by Mild Hydrothermal Synthesis: Influence of pH on the Selective Oxidation of Propylene. Catalysts, 2015, 5, 1554-1573.	1.6	38
30	Systematic study on the influence of the morphology of \hat{l}_{\pm} -MoO3 in the selective oxidation of propylene. Journal of Solid State Chemistry, 2015, 228, 42-52.	1.4	24
31	One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein. Chemical Communications, 2014, 50, 15404-15406.	2.2	36
32	Structure, activity and kinetics of supported molybdenum oxide and mixed molybdenum–vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHD. Applied Catalysis A: General, 2014, 472, 29-38.	2.2	27
33	Nitrene-Carbene-Carbene Rearrangement. Photolysis and Thermolysis of Tetrazolo[5,1- <i>a</i> phthalazine with Formation of 1-Phthalazinylnitrene, <i>o-</i> Cyanophenylcarbene, and Phenylcyanocarbene. Journal of Organic Chemistry, 2014, 79, 307-313.	1.7	8
34	Selective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdates. Applied Catalysis A: General, 2014, 482, 145-156.	2.2	41
35	Structure of alumina supported vanadia catalysts for oxidative dehydrogenation of propane prepared by flame spray pyrolysis. Applied Catalysis A: General, 2013, 451, 207-215.	2.2	30
36	Two-Nozzle Flame Spray Pyrolysis (FSP) Synthesis of CoMo/Al2O3 Hydrotreating Catalysts. Catalysis Letters, 2013, 143, 386-394.	1.4	25

Martin HÃ,J

#	Article	IF	CITATIONS
37	Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts. Applied Catalysis A: General, 2011, 397, 201-208.	2.2	39
38	Nature of Active Sites of Fe-Beta Catalyst for NOx-SCR by NH3. Topics in Catalysis, 2009, 52, 1728-1733.	1.3	25
39	The role of monomeric iron during the selective catalytic reduction of NOx by NH3 over Fe-BEA zeolite catalysts. Applied Catalysis B: Environmental, 2009, 93, 166-176.	10.8	109
40	Tetrathiafulvalene-functionalized triptycenes: synthetic protocols and elucidation of intramolecular Coulomb repulsions in the oxidized species. Tetrahedron, 2007, 63, 8840-8854.	1.0	14