Christos Argyropoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6454300/publications.pdf

Version: 2024-02-01

131	5,739	35	74
papers	citations	h-index	g-index
132	132	132	5983 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Tunable SERS Enhancement via Sub-nanometer Gap Metasurfaces. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15541-15548.	4.0	12
2	Unraveling the temperature dynamics and hot electron generation in tunable gap-plasmon metasurface absorbers. Nanophotonics, 2022, 11, 4037-4052.	2.9	12
3	Mechanically tunable radiative cooling for adaptive thermal control. Applied Thermal Engineering, 2022, 211, 118527.	3.0	14
4	Nonlinear Strong Coupling by Secondâ€Harmonic Generation Enhancement in Plasmonic Nanopatch Antennas. Advanced Optical Materials, 2022, 10, .	3.6	9
5	Light and matter interactions: Recent advances in materials, theory, fabrication, and characterization. APL Materials, 2022, 10, .	2.2	4
6	Cathodoluminescence of Ultrathin Twisted Ge 1– x Sn x S van der Waals Nanoribbon Waveguides. Advanced Materials, 2021, 33, 2006649.	11.1	17
7	Plasmonic Waveguides: Enhancing Quantum Electrodynamic Phenomena at Nanoscale. IEEE Antennas and Propagation Magazine, 2021, , 2-14.	1.2	2
8	Broadband Enhanced Chirality with Tunable Response in Hybrid Plasmonic Helical Metamaterials. Advanced Functional Materials, 2021, 31, 2010329.	7.8	26
9	Near-unity broadband omnidirectional emissivity via femtosecond laser surface processing. Communications Materials, 2021, 2, .	2.9	12
10	Recent Advances in Terahertz Photonic Technologies Based on Graphene and Their Applications. Advanced Photonics Research, 2021, 2, 2000168.	1.7	12
11	Optoelectronics and Nanophotonics of Vapor–Liquid–Solid Grown GaSe van der Waals Nanoribbons. Nano Letters, 2021, 21, 4335-4342.	4.5	25
12	Helical Nanostructures: Broadband Enhanced Chirality with Tunable Response in Hybrid Plasmonic Helical Metamaterials (Adv. Funct. Mater. 20/2021). Advanced Functional Materials, 2021, 31, 2170143.	7.8	1
13	Near-field imaging of plasmonic nanopatch antennas with integrated semiconductor quantum dots. APL Photonics, 2021, 6, .	3.0	10
14	Efficient single-photon pair generation by spontaneous parametric down-conversion in nonlinear plasmonic metasurfaces. Nanoscale, 2021, 13, 19903-19914.	2.8	20
15	Multiqubit entanglement and quantum phase gates with epsilon-near-zero plasmonic waveguides. Applied Physics Letters, 2021, 119, .	1.5	7
16	Broadband Field Enhancement and Giant Nonlinear Effects in Terminated Unidirectional Plasmonic Waveguides. Physical Review Applied, 2020, 14, .	1.5	16
17	Small mode volume plasmonic film-coupled nanostar resonators. Nanoscale Advances, 2020, 2, 2397-2403.	2.2	15
18	Plasmonic Effects on the Growth of Ag Nanocrystals in Solution. Langmuir, 2020, 36, 2044-2051.	1.6	11

#	Article	IF	Citations
19	Tunable and broadband coherent perfect absorbers with nonlinear and amplification performance based on asymmetric bifacial graphene metasurfaces. Journal of Optics (United Kingdom), 2020, 22, 084003.	1.0	9
20	Self-Induced Passive Nonreciprocal Transmission by Nonlinear Bifacial Dielectric Metasurfaces. Physical Review Applied, 2020, 13, .	1.5	25
21	Nonlinear and Amplification Response with Asymmetric Graphene-based Coherent Perfect Absorbers. , 2020, , .		1
22	Plasmon-assisted random lasing from a single-mode fiber tip. Optics Express, 2020, 28, 16417.	1.7	2
23	Robust Self-Induced Nonreciprocal Transmission in Nonlinear PT-Symmetric Epsilon-Near-Zero Metamaterials., 2020,,.		O
24	Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems. Nanoscale, 2019, 11, 14635-14647.	2.8	34
25	Nonreciprocal Transmission in Nonlinear PTâ€Symmetric Metamaterials Using Epsilonâ€Nearâ€Zero Media Doped with Defects. Advanced Optical Materials, 2019, 7, 1901083.	3.6	28
26	A Theoretical Model of Underground Dipole Antennas for Communications in Internet of Underground Things. IEEE Transactions on Antennas and Propagation, 2019, 67, 3996-4009.	3.1	64
27	DNAâ€Mediated Selfâ€Assembly of Plasmonic Antennas with a Single Quantum Dot in the Hot Spot. Small, 2019, 15, e1804418.	5.2	29
28	Exceptional points and spectral singularities in active epsilon-near-zero plasmonic waveguides. Physical Review B, 2019, 99, .	1.1	37
29	Hybrid Graphene-Plasmonic Gratings to Achieve Enhanced Nonlinear Effects at Terahertz Frequencies. Physical Review Applied, $2019,11,.$	1.5	44
30	Polarization-Independent and Broadband THz Coherent Perfect Absorber based on Black Phosphorus Bifacial Metasurfaces. , 2019, , .		0
31	Slow light at the nanoscale based on active epsilon-near-zero plasmonic waveguides. , 2019, , .		O
32	Grapheneâ€based directive optical leaky wave antenna. Microwave and Optical Technology Letters, 2019, 61, 153-157.	0.9	19
33	Tunable plasmonic resonances in Si-Au slanted columnar heterostructure thin films. Scientific Reports, 2019, 9, 71.	1.6	12
34	Tunable nonlinear and active THz devices based on hybrid graphene metasurfaces. , 2019, , .		1
35	Tunable and broadband coherent perfect absorption by ultrathin black phosphorus metasurfaces. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2962.	0.9	28
36	Rational Synthesis of Largeâ€Area Periodic Chemical Gradients for the Manipulation of Liquid Droplets and Gas Bubbles. Advanced Functional Materials, 2018, 28, 1705564.	7.8	13

#	Article	IF	CITATIONS
37	Design of optical leaky wave antenna with circular and diamond <scp>S</scp> i perturbations for enhancing its performance. Microwave and Optical Technology Letters, 2018, 60, 1395-1398.	0.9	8
38	Pattern controlled and frequency tunable microstrip antenna loaded with multiple split ring resonators. IET Microwaves, Antennas and Propagation, 2018, 12, 390-394.	0.7	30
39	Tunable Subnanometer Gap Plasmonic Metasurfaces. ACS Photonics, 2018, 5, 1012-1018.	3.2	28
40	Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides. Optics Letters, 2018, 43, 1806.	1.7	42
41	Soft Microreactors for the Deposition of Conductive Metallic Traces on Planar, Embossed, and Curved Surfaces. Advanced Functional Materials, 2018, 28, 1803020.	7.8	44
42	Germanium Sulfide Nano-Optics Probed by STEM-Cathodoluminescence Spectroscopy. Nano Letters, 2018, 18, 4576-4583.	4.5	34
43	Nonlinear graphene metasurfaces with advanced electromagnetic functionalities. , 2018, , .		5
44	Tunable terahertz amplification based on photoexcited active graphene hyperbolic metamaterials [Invited]. Optical Materials Express, 2018, 8, 3941.	1.6	37
45	Nonlinear waves in hyperbolic metamaterials: focus on solitons and rogues. , 2018, , .		0
46	Epsilon-near-zero plasmonic waveguides to enhance nonlinear coherent light-matter interactions. , 2018, , .		2
47	Broadband compact microstrip patch antenna design loaded by multiple split ring resonator superstrate and substrate. Waves in Random and Complex Media, 2017, 27, 92-102.	1.6	36
48	Flatland plasmonics and nanophotonics based on graphene and beyond. Nanophotonics, 2017, 6, 1239-1262.	2.9	71
49	In Situ Electron Microscopy of Plasmon-Mediated Nanocrystal Synthesis. Journal of the American Chemical Society, 2017, 139, 6771-6776.	6.6	35
50	Optical Antennas: Controlling Electromagnetic Scattering, Radiation, and Emission at the Nanoscale. IEEE Antennas and Propagation Magazine, 2017, 59, 43-61.	1.2	21
51	Enhanced third harmonic generation with graphene metasurfaces. Journal of Optics (United) Tj ETQq1 1 0.7843	14 _{[g} BT /C)verlock 10 Ti
52	Nonlinear graphene metasurface to enhance third harmonic generation at terahertz frequencies. , $2017, \dots$		1
53	Broadband and high gain multiband patch antenna designs using corrugated split ring resonators. , 2017, , .		1
54	Graphene-based terahertz polarization converters., 2017,,.		2

#	Article	IF	CITATIONS
55	PT-symmetric epsilon-near-zero plasmonic waveguides. , 2017, , .		1
56	Optical modulation with tunable hybrid metasurfaces., 2017,,.		0
57	Editorial of the Special Issue: "Artificial materials for advanced applications in electromagnetics and mechanics― EPJ Applied Metamaterials, 2017, 4, E1.	0.8	0
58	Controlling collective spontaneous emission with plasmonic waveguides. Optics Express, 2016, 24, 26696.	1.7	31
59	Broadband polarizers based on graphene metasurfaces. Optics Letters, 2016, 41, 5592.	1.7	170
60	Soft Surfaces for the Reversible Control of Thinâ€Film Microstructure and Optical Reflectance. Advanced Materials, 2016, 28, 2595-2600.	11.1	37
61	Enhanced bandwidth and gain of compact microstrip antennas loaded with multiple corrugated split ring resonators. Journal of Electromagnetic Waves and Applications, 2016, 30, 945-961.	1.0	24
62	Plasmon–Exciton Coupling Using DNA Templates. Nano Letters, 2016, 16, 5962-5966.	4.5	94
63	Efficient Nanosecond Photoluminescence from Infrared PbS Quantum Dots Coupled to Plasmonic Nanoantennas. ACS Photonics, 2016, 3, 1741-1746.	3.2	70
64	Quantum superradiant and subradiant modes in plasmonic nanochannels., 2016,,.		0
65	Enhanced four-wave mixing with nonlinear plasmonic metasurfaces. Scientific Reports, 2016, 6, 28746.	1.6	38
66	Plasmonic nanoantennas: enhancing light-matter interactions at the nanoscale. EPJ Applied Metamaterials, 2015, 2, 4.	0.8	37
67	Editorial to the topical issue "Advanced Metamaterials in Microwaves, Optics and Mechanics― EPJ Applied Metamaterials, 2015, 2, 1.	0.8	3
68	Directional plasmonic nanoantennas to enhance the purcell effect. , 2015, , .		0
69	MIMO optical wireless at the nanoscale. , 2015, , .		1
70	Optical bistability with film-coupled metasurfaces. Optics Letters, 2015, 40, 5638.	1.7	35
71	Graded metascreens to enable a new degree of nanoscale light management. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140351.	1.6	27
72	Plasmonic Nanopatch Antennas for Large Purcell Enhancement. , 2015, , .		0

#	Article	IF	Citations
7 3	Ultrafast spontaneous emission source using plasmonic nanoantennas. Nature Communications, 2015, 6, 7788.	5.8	345
74	Enhanced Second-Harmonic Generation by Metasurface Nanomixer and Nanocavity. ACS Photonics, 2015, 2, 1000-1006.	3.2	51
7 5	Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors. Nano Letters, 2015, 15, 3578-3584.	4.5	200
76	Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene. Optics Express, 2015, 23, 23787.	1.7	91
77	Tunable Plasmonic and Hyperbolic Metamaterials Based on Enhanced Nonlinear Response. International Journal of Antennas and Propagation, 2014, 2014, 1-11.	0.7	9
78	Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2601.	0.9	30
79	Enhanced optical bistability with film-coupled plasmonic nanocubes. Applied Physics Letters, 2014, 104,	1.5	46
80	FDTD Modelling of Transformation Electromagnetics Based Devices. , 2014, , 487-515.		0
81	Temporal soliton excitation in an Îμ-near-zero plasmonic metamaterial. Optics Letters, 2014, 39, 5566.	1.7	28
82	Plasmonic Optical Nanoantennas. Handbook of Surface Science, 2014, 4, 109-136.	0.3	7
83	Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nature Photonics, 2014, 8, 835-840.	15.6	849
84	Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 2014, 511, 65-69.	13.7	550
85	Giant second-harmonic generation efficiency and ideal phase matching with a double $\hat{l}\mu$ -near-zero cross-slit metamaterial. Physical Review B, 2014, 89, .	1.1	63
86	Broadening the Cloaking Bandwidth with Non-Foster Metasurfaces. Physical Review Letters, 2013, 111, 233001.	2.9	167
87	Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths. Applied Physics Letters, 2013, 103, .	1.5	43
88	Ultra-broadband absorption in metallic gratings at the $\#\times2018$; plasmonic Brewster angle $\#\times2019$;., 2013,,.		0
89	Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Physical Review B, 2013, 87, .	1.1	183
90	Terahertz Antenna Phase Shifters Using Integrally-Gated Graphene Transmission-Lines. IEEE Transactions on Antennas and Propagation, 2013, 61, 1528-1537.	3.1	174

#	Article	IF	CITATIONS
91	Nonlinear Optical Effects in Epsilon-Near-Zero Plasmonic Waveguides and Metamaterials., 2013,,.		O
92	Negative refraction, gain and nonlinear effects in hyperbolic metamaterials. Optics Express, 2013, 21, 15037.	1.7	152
93	Temporal soliton propagation and second harmonic generation in epsilon-near-zero plasmonic waveguides. , 2013, , .		0
94	Multilayered Plasmonic Covers for Comblike Scattering Response and Optical Tagging. Physical Review Letters, 2013, 110, 113901.	2.9	64
95	Nonlinear and active hyperbolic metamaterials. , 2013, , .		0
96	Plasmonic Brewster transmission in photonic gratings and crystals. , 2012, , .		8
97	Enhanced nonlinear effects in metamaterials and plasmonic materials. , 2012, , .		0
98	Thermal emission from a metamaterial wire medium slab. Optics Express, 2012, 20, 9784.	1.7	21
99	Matching and funneling light at the plasmonic Brewster angle. Physical Review B, 2012, 85, .	1.1	51
100	Broadband Brewster transmission through 2D metallic gratings. Journal of Applied Physics, 2012, 112, .	1.1	27
101	Taming the thermal emissivity of metals: A metamaterial approach. Applied Physics Letters, 2012, 100, .	1.5	28
102	Plasmonic Composite Nanoparticles to Engineer the Optical Scattering Spectra. , 2012, , .		0
103	Nonlinear Plasmonic Cloaks to Realize Giant All-Optical Scattering Switching. Physical Review Letters, 2012, 108, 263905.	2.9	139
104	Enhanced nonlinearities using plasmonic nanoantennas. Nanophotonics, 2012, 1, 221-233.	2.9	64
105	Layered plasmonic cloaks to tailor the optical scattering at the nanoscale. Scientific Reports, 2012, 2, 912.	1.6	40
106	Boosting optical nonlinearities in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>$\hat{l}\mu$</mml:mi></mml:math> -near-zero plasmonic channels. Physical Review B, 2012, 85, .	1,1	200
107	Enhanced Nonlinear Effects in Metamaterials and Plasmonics. Advanced Electromagnetics, 2012, 1, 46.	0.7	11
108	Ultra-Broadband Matching and Funneling of Light at the Plasmonic Brewster-angle., 2012,,.		0

#	Article	IF	CITATIONS
109	Study of an optical nanolens with the parallel finite difference time domain technique. Radio Science, 2011, 46, .	0.8	1
110	All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam. New Journal of Physics, 2011, 13, 103023.	1.2	36
111	Bandwidth evaluation of dispersive transformation electromagnetics based devices. Applied Physics A: Materials Science and Processing, 2011, 103, 715-719.	1.1	6
112	Comparison of frequency responses of cloaking devices under nonmonochromatic illumination. Physical Review B, 2011, 84, .	1.1	27
113	Experimental verification of carpet cloak realized with dielectric cylinders. , 2011, , .		1
114	A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders. Frontiers of Physics in China, 2010, 5, 319-323.	1.0	15
115	Parallel FDTD modeling of metallic nanolens. , 2010, , .		0
116	Flat devices design for antenna systems using coordinate transformation. , 2010, , .		0
117	Dispersive cylindrical cloaks under nonmonochromatic illumination. Physical Review E, 2010, 81, 016611.	0.8	19
118	Discrete Coordinate Transformation for Designing All-Dielectric Flat Antennas. IEEE Transactions on Antennas and Propagation, 2010, 58, 3795-3804.	3.1	108
119	Discrete transformation electromagnetics and its applications in antenna design. , 2010, , .		O
120	FDTD analysis of the optical black hole. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 2020.	0.9	30
121	Finite-Difference Time-Domain Modeling of Electromagnetic Cloaks. , 2010, , 115-153.		O
122	Examining the limitations of ideal cylindrical cloaks through dispersive finite-difference time-domain simulations. , 2009, , .		0
123	Manipulating the loss in electromagnetic cloaks for perfect wave absorption. Optics Express, 2009, 17, 8467.	1.7	29
124	Ground-plane quasicloaking for free space. Physical Review A, 2009, 79, .	1.0	75
125	A Radially-Dependent Dispersive Finite-Difference Time-Domain Method for the Evaluation of Electromagnetic Cloaks. IEEE Transactions on Antennas and Propagation, 2009, 57, 1432-1441.	3.1	47
126	Characterization of microwave absorber based on transformation electromagnetics., 2009,,.		0

#	Article	IF	CITATIONS
127	Finite-difference time-domain simulations of approximate ground-plane cloaks. , 2009, , .		1
128	Properties and applications of periodic dielectric particles as tunable-index materials. , 2009, , .		1
129	Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures. Optics Express, 2008, 16, 6717.	1.7	112
130	Dispersive Finite-Difference Time-Domain simulation of electromagnetic cloaking devices. , 2008, , .		1
131	Dispersive finite-difference time-domain simulation of electromagnetic cloaking structures. , 2008, , .		O