
Dunja Aksentijevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6453705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of reduced uterine perfusion pressure model of preeclampsia on metabolism of placenta, maternal and fetal hearts. Scientific Reports, 2022, 12, 1111.	1.6	9
2	Loss of voltage-gated hydrogen channel 1 expression reveals heterogeneous metabolic adaptation to intracellular acidification by T cells. JCI Insight, 2022, 7, .	2.3	7
3	Cardiac metabolic remodelling in chronic kidney disease. Nature Reviews Nephrology, 2022, 18, 524-537.	4.1	21
4	Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovascular Research, 2021, 117, 1188-1201.	1.8	59
5	Structural basis for a complex I mutation that blocks pathological ROS production. Nature Communications, 2021, 12, 707.	5.8	71
6	Nectar-feeding bats and birds show parallel molecular adaptations in sugar metabolism enzymes. Current Biology, 2021, 31, 4667-4674.e6.	1.8	7
7	With a grain of salt: Sodium elevation and metabolic remodelling in heart failure. Journal of Molecular and Cellular Cardiology, 2021, 161, 106-115.	0.9	7
8	Senescence and Type 2 Diabetic Cardiomyopathy: How Young Can You Die of Old Age?. Frontiers in Pharmacology, 2021, 12, 716517.	1.6	9
9	Vascular KATP channels protect from cardiac dysfunction and preserve cardiac metabolism during endotoxemia. Journal of Molecular Medicine, 2020, 98, 1149-1160.	1.7	2
10	Preservation of microvascular barrier function requires CD31 receptor-induced metabolic reprogramming. Nature Communications, 2020, 11, 3595.	5.8	22
11	Intracellular sodium elevation reprograms cardiac metabolism. Nature Communications, 2020, 11, 4337.	5.8	44
12	Age-Dependent Decline in Cardiac Function in Guanidinoacetate-N-Methyltransferase Knockout Mice. Frontiers in Physiology, 2020, 10, 1535.	1.3	11
13	Cardiac metabolomic profile of the naked mole-rat—glycogen to the rescue. Biology Letters, 2019, 15, 20190710.	1.0	22
14	Immunometabolic cross-talk in the inflamed heart. Cell Stress, 2019, 3, 240-266.	1.4	19
15	Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine. Cardiovascular Research, 2018, 114, 417-430.	1.8	40
16	ls there a causal link between intracellular Na elevation and metabolic remodelling in cardiac hypertrophy?. Biochemical Society Transactions, 2018, 46, 817-827.	1.6	15
17	ls rate-pressure product of any use in the isolated rat heart? Assessing cardiac â€~effort' and oxygen consumption in the Langendorff-perfused heart. Experimental Physiology, 2016, 101, 282-294.	0.9	16
18	Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation. Journal of Physiology, 2016, 594, 307-320.	1.3	40

DUNJA AKSENTIJEVIC

#	Article	IF	CITATIONS
19	On the pivotal role of PPARa in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury. FASEB Journal, 2016, 30, 2684-2697.	0.2	54
20	Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. Free Radical Biology and Medicine, 2015, 89, 883-894.	1.3	111
21	Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i. Journal of Molecular and Cellular Cardiology, 2015, 86, 95-101.	0.9	22
22	Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 2014, 515, 431-435.	13.7	1,989
23	Cardiac dysfunction and peri-weaning mortality in malonyl-coenzyme A decarboxylase (MCD) knockout mice as a consequence of restricting substrate plasticity. Journal of Molecular and Cellular Cardiology, 2014, 75, 76-87.	0.9	18
24	Pathophysiologically-Relevant Levels of Endogenous Cardiotonic Steroids Inhibit the Cardiac Na/K ATPase and Activate ERK1/2 Hypertrophic Signaling In Vivo and In Vitro. Biophysical Journal, 2014, 106, 304a.	0.2	0
25	Metabolic Inflexibility of Malonyl CoA Decarboxylase (MCD) Knockout Mice Leads to Cardiac Remodelling and High Mortality During Peri-Weaning Period. Biophysical Journal, 2014, 106, 187a.	0.2	0
26	Myocardial Creatine Levels Do Not Influence Response to Acute Oxidative Stress in Isolated Perfused Heart. PLoS ONE, 2014, 9, e109021.	1.1	15
27	Unchanged Mitochondrial Organization and Compartmentation in Creatine Deficient GAMT-/- Mouse Heart. Biophysical Journal, 2013, 104, 314a-315a.	0.2	Ο
28	Cardiomyocytes from Creatine-Deficient Mice Lacking L-Arginine:Glycine Amidinotransferase (AGAT) Show No Changes in Mitochondrial Organization and Cellular Compartmentation. Biophysical Journal, 2013, 104, 303a.	0.2	0
29	Unchanged mitochondrial organization and compartmentation of high-energy phosphates in creatine-deficient GAMT ^{â^'/â''} mouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H506-H520.	1.5	30
30	Living Without Creatine. Circulation Research, 2013, 112, 945-955.	2.0	104
31	Ribose Supplementation Alone or with Elevated Creatine Does Not Preserve High Energy Nucleotides or Cardiac Function in the Failing Mouse Heart. PLoS ONE, 2013, 8, e66461.	1.1	9
32	Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovascular Research, 2012, 96, 466-475.	1.8	78
33	Fumarate Is Cardioprotective via Activation of the Nrf2 Antioxidant Pathway. Cell Metabolism, 2012, 15, 361-371.	7.2	231
34	Chronic creatine kinase deficiency eventually leads to congestive heart failure, but severity is dependent on genetic background, gender and age. Basic Research in Cardiology, 2012, 107, 276.	2.5	24
35	Functional and metabolic adaptation in uraemic cardiomyopathy. Frontiers in Bioscience - Elite, 2010, E2, 1492-1501.	0.9	9
36	Highâ€energy phosphotransfer in the failing mouse heart: role of adenylate kinase and glycolytic enzymes. European Journal of Heart Failure, 2010, 12, 1282-1289.	2.9	29

#	Article	IF	CITATIONS
37	Insulin resistance and altered glucose transporter 4 expression in experimental uremia. Kidney International, 2009, 75, 711-718.	2.6	16
38	Altered expression of myocardial [Ca2+] handling proteins in experimental uraemia. Journal of Molecular and Cellular Cardiology, 2007, 42, S139-S140.	0.9	0
39	The effect of increased [Ca2+] on myocardial function and energy provision in experimental uraemia. Journal of Molecular and Cellular Cardiology, 2007, 42, S67.	0.9	0
40	Myocardial GLUT 4 expression in experimental uraemia. Journal of Molecular and Cellular Cardiology, 2007, 42, S55.	0.9	0
41	The impact of increasing calcium on myocardial function in experimental uraemia. Journal of Molecular and Cellular Cardiology, 2006, 40, 932.	0.9	0