Donald M O'rourke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6453271/publications.pdf Version: 2024-02-01

		38738	36025
131	10,384	50	97
papers	citations	h-index	g-index
133 all docs	133 docs citations	133 times ranked	14151 citing authors

#	Article	IF	CITATIONS
1	MR susceptibility imaging for detection of tumor-associated macrophages inÂglioblastoma. Journal of Neuro-Oncology, 2022, 156, 645-653.	2.9	2
2	Enhancing CAR T function with the engineered secretion of C.Âperfringens neuraminidase. Molecular Therapy, 2022, 30, 1201-1214.	8.2	7
3	Glioblastoma: The Current State of Biology and Therapeutic Strategies. Cancer Research, 2022, 82, 769-772.	0.9	9
4	Risk of intracranial hemorrhage with direct oral anticoagulants vs low molecular weight heparin in glioblastoma: A retrospective cohort study. Neuro-Oncology, 2022, 24, 2172-2179.	1.2	15
5	Immunologic Features in <i>De Novo</i> and Recurrent Glioblastoma Are Associated with Survival Outcomes. Cancer Immunology Research, 2022, 10, 800-810.	3.4	9
6	PD1 Expression in EGFRvIII-Directed CAR T Cell Infusion Product for Glioblastoma Is Associated with Clinical Response. Frontiers in Immunology, 2022, 13, .	4.8	10
7	Locally secreted BiTEs complement CAR TÂcells by enhancing killing of antigen heterogeneous solid tumors. Molecular Therapy, 2022, 30, 2537-2553.	8.2	32
8	Clinical measures, radiomics, and genomics offer synergistic value in AI-based prediction of overall survival in patients with glioblastoma. Scientific Reports, 2022, 12, .	3.3	20
9	Risk of intracranial hemorrhage with direct oral anticoagulants versus low molecular weight heparin in glioblastoma: A retrospective cohort study Journal of Clinical Oncology, 2022, 40, 2015-2015.	1.6	1
10	Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. Nature Cancer, 2021, 2, 83-97.	13.2	56
11	CAR T Cells. Neurosurgery Clinics of North America, 2021, 32, 249-263.	1.7	3
12	Case Report: Prolonged Survival Following EGFRvIII CAR T Cell Treatment for Recurrent Glioblastoma. Frontiers in Oncology, 2021, 11, 669071.	2.8	34
13	Molecular and Clinical Characterization of UBE2S in Glioma as a Biomarker for Poor Prognosis and Resistance to Chemo-Radiotherapy. Frontiers in Oncology, 2021, 11, 640910.	2.8	7
14	Abstract 2203: Identifying the transcriptomic signatures of mutational heterogeneity in GBM using single cell genomics. , 2021, , .		0
15	Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging. Scientific Reports, 2021, 11, 15011.	3.3	10
16	High-Affinity Chimeric Antigen Receptor With Cross-Reactive scFv to Clinically Relevant EGFR Oncogenic Isoforms. Frontiers in Oncology, 2021, 11, 664236.	2.8	14
17	Association of plasma cell-free DNA with survival in patients with IDH wild-type glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab011.	0.7	10
18	Clinical investigation of CAR T cells for solid tumors: Lessons learned and future directions. , 2020, 205, 107419.		81

#	Article	IF	CITATIONS
19	Clinical Utility of Plasma Cell-Free DNA in Adult Patients with Newly Diagnosed Glioblastoma: A Pilot Prospective Study. Clinical Cancer Research, 2020, 26, 397-407.	7.0	63
20	Potential of Glioblastoma-Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy. CNS Drugs, 2020, 34, 127-145.	5.9	26
21	A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell, 2020, 180, 188-204.e22.	28.9	529
22	Mechanisms of resistance to CAR T cell therapies. Seminars in Cancer Biology, 2020, 65, 91-98.	9.6	31
23	A dual-genotype oligoastrocytoma with histologic, molecular, radiological and time-course features. Acta Neuropathologica Communications, 2020, 8, 115.	5.2	5
24	An additive score optimized by a genetic learning algorithm predicts readmission risk after glioblastoma resection. Journal of Clinical Neuroscience, 2020, 80, 1-5.	1.5	6
25	Immunotherapy and Response Assessment in Malignant Glioma. Topics in Magnetic Resonance Imaging, 2020, 29, 95-102.	1.2	5
26	Imaging and histopathologic correlates of plasma cell-free DNA concentration and circulating tumor DNA in adult patients with newly diagnosed glioblastoma. Neuro-Oncology Advances, 2020, 2, vdaa016.	0.7	15
27	Al-based prognostic imaging biomarkers for precision neuro-oncology: the ReSPOND consortium. Neuro-Oncology, 2020, 22, 886-888.	1.2	31
28	Cancer Imaging Phenomics via CaPTk: Multi-Institutional Prediction of Progression-Free Survival and Pattern of Recurrence in Glioblastoma. JCO Clinical Cancer Informatics, 2020, 4, 234-244.	2.1	26
29	18F-Fluciclovine PET to distinguish treatment-related effects from disease progression in recurrent glioblastoma: PET fusion with MRI guides neurosurgical sampling. Neuro-Oncology Practice, 2020, 7, 152-157.	1.6	14
30	Histopathologyâ€validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudoâ€progression in glioblastoma. Cancer, 2020, 126, 2625-2636.	4.1	60
31	Type V Dural Arteriovenous Fistula Supplied by the Artery of Wollschlaeger and Wollschlaeger Causing Cervical Myelopathy and Quadriparesis. World Neurosurgery, 2020, 137, 55-61.	1.3	6
32	Wnt-mediated endothelial transformation into mesenchymal stem cell–like cells induces chemoresistance in glioblastoma. Science Translational Medicine, 2020, 12, .	12.4	86
33	Rindopepimut with Bevacizumab for Patients with Relapsed EGFRvIII-Expressing Clioblastoma (ReACT): Results of a Double-Blind Randomized Phase II Trial. Clinical Cancer Research, 2020, 26, 1586-1594.	7.0	103
34	Multi-institutional noninvasive in vivo characterization of <i>IDH</i> , 1p/19q, and EGFRvIII in glioma using neuro-Cancer Imaging Phenomics Toolkit (neuro-CaPTk). Neuro-Oncology Advances, 2020, 2, iv22-iv34.	0.7	12
35	A Randomized Double-Blind Placebo-Controlled Phase II Trial of Dendritic Cell Vaccine ICT-107 in Newly Diagnosed Patients with Glioblastoma. Clinical Cancer Research, 2019, 25, 5799-5807.	7.0	166
36	Negative prognostic impact of epidermal growth factor receptor copy number gain in young adults with isocitrate dehydrogenase wild-type glioblastoma. Journal of Neuro-Oncology, 2019, 145, 321-328.	2.9	7

#	Article	IF	CITATIONS
37	Molecular Neuropathology in Practice: Clinical Profiling and Integrative Analysis of Molecular Alterations in Glioblastoma. Academic Pathology, 2019, 6, 2374289519848353.	1.1	21
38	Arterial Spin Labeling and Dynamic Susceptibility Contrast-enhanced MR Imaging for evaluation of arteriovenous shunting and tumor hypoxia in glioblastoma. Scientific Reports, 2019, 9, 8747.	3.3	10
39	LACE+ Index as Predictor of 30-Day Readmission in Brain Tumor Population. World Neurosurgery, 2019, 127, e443-e448.	1.3	16
40	Transcriptome signatures associated with meningioma progression. Acta Neuropathologica Communications, 2019, 7, 67.	5.2	36
41	The LACE+ index fails to predict 30–90 day readmission for supratentorial craniotomy patients: A retrospective series of 238 surgical procedures. Clinical Neurology and Neurosurgery, 2019, 182, 79-83.	1.4	17
42	Detection of occult neoplastic infiltration in the corpus callosum and prediction of overall survival in patients with glioblastoma using diffusion tensor imaging. European Journal of Radiology, 2019, 112, 106-111.	2.6	16
43	Clinical activity of the <i>EGFR</i> tyrosine kinase inhibitor osimertinib in <i>EGFR</i> -mutant glioblastoma. CNS Oncology, 2019, 8, CNS43.	3.0	38
44	Multivariate Analysis of Preoperative Magnetic Resonance Imaging Reveals Transcriptomic Classification of de novo Glioblastoma Patients. Frontiers in Computational Neuroscience, 2019, 13, 81.	2.1	5
45	Rapid and ultrasensitive digital PCR (dPCR) profiling of EGFRvIII in tumor cells and tissues. Neuro-Oncology Advances, 2019, 1, vdz030.	0.7	5
46	Immune landscapes associated with different glioblastoma molecular subtypes. Acta Neuropathologica Communications, 2019, 7, 203.	5.2	112
47	Threeâ€dimensional echo planar spectroscopic imaging for differentiation of true progression from pseudoprogression in patients with glioblastoma. NMR in Biomedicine, 2019, 32, e4042.	2.8	38
48	Multiparametric magnetic resonance imaging in the assessment of anti-EGFRvIII chimeric antigen receptor T cell therapy in patients with recurrent glioblastoma. British Journal of Cancer, 2019, 120, 54-56.	6.4	27
49	Histopathologic quantification of viable tumor versus treatment effect in surgically resected recurrent glioblastoma. Journal of Neuro-Oncology, 2019, 141, 421-429.	2.9	15
50	RNA-seq for identification of therapeutically targetable determinants of immune activation in human glioblastoma. Journal of Neuro-Oncology, 2019, 141, 95-102.	2.9	5
51	Differentiation of brain infection from necrotic glioblastoma using combined analysis of diffusion and perfusion MRI. Journal of Magnetic Resonance Imaging, 2019, 49, 184-194.	3.4	17
52	Evaluating the Association Between the Extent of Resection and Survival in Gliosarcoma. Cureus, 2019, 11, e4374.	0.5	6
53	CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro-Oncology, 2018, 20, 1429-1438.	1.2	197
54	Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Scientific Reports, 2018, 8, 5087.	3.3	124

#	Article	IF	CITATIONS
55	Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2α. Nature Communications, 2018, 9, 559.	12.8	176
56	<i>In vivo</i> evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro-Oncology, 2018, 20, 1068-1079.	1.2	90
57	Checkpoint Blockade Reverses Anergy in IL-13Rα2 Humanized scFv-Based CAR T Cells to Treat Murine and Canine Gliomas. Molecular Therapy - Oncolytics, 2018, 11, 20-38.	4.4	123
58	Circulating Glioma Cells Exhibit Stem Cell-like Properties. Cancer Research, 2018, 78, 6632-6642.	0.9	79
59	Epidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic Development. Cancer Cell, 2018, 34, 163-177.e7.	16.8	145
60	PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nature Communications, 2018, 9, 3439.	12.8	95
61	Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics. Cell Reports, 2017, 18, 791-803.	6.4	60
62	Autologous Heat Shock Protein Peptide Vaccination for Newly Diagnosed Glioblastoma: Impact of Peripheral PD-L1 Expression on Response to Therapy. Clinical Cancer Research, 2017, 23, 3575-3584.	7.0	78
63	<i>In Vivo</i> Detection of EGFRvIII in Glioblastoma via Perfusion Magnetic Resonance Imaging Signature Consistent with Deep Peritumoral Infiltration: The <i>ü</i> -Index. Clinical Cancer Research, 2017, 23, 4724-4734.	7.0	79
64	Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncology, The, 2017, 18, 1373-1385.	10.7	776
65	SHP2 regulates proliferation and tumorigenicity of glioma stem cells. Journal of Neuro-Oncology, 2017, 135, 487-496.	2.9	29
66	A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Science Translational Medicine, 2017, 9, .	12.4	1,116
67	Go, no-go decision making for phase 3 clinical trials: ACT IV revisited – Authors' reply. Lancet Oncology, The, 2017, 18, e709-e710.	10.7	5
68	Pervasive within-Mitochondrion Single-Nucleotide Variant Heteroplasmy as Revealed by Single-Mitochondrion Sequencing. Cell Reports, 2017, 21, 2706-2713.	6.4	48
69	Use of targeted next generation sequencing (NGS) to assess mutational load in glioblastoma (GBM) Journal of Clinical Oncology, 2017, 35, 2027-2027.	1.6	1
70	Engineering Chimeric Antigen Receptor T cells to Treat Glioblastoma. The Journal of Targeted Therapies in Cancer, 2017, 6, 22-25.	2.0	10
71	c-Met–mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. Journal of Clinical Investigation, 2016, 126, 1801-1814.	8.2	92
72	Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma. Neurosurgery, 2016, 78, 572-580.	1.1	116

#	Article	IF	CITATIONS
73	Population-based MRI atlases of spatial distribution are specific to patient and tumor characteristics in glioblastoma. NeuroImage: Clinical, 2016, 12, 34-40.	2.7	49
74	Assignment Confidence in Localization of the Hand Motor Cortex: Comparison of Structural Imaging With Functional MRI. American Journal of Roentgenology, 2016, 207, 1263-1270.	2.2	3
75	Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-Oncology, 2016, 18, 417-425.	1.2	243
76	General Principles of Immunotherapy for Glioblastoma. , 2016, , 237-246.		1
77	Novel risk scores for survival and intracranial failure in patients treated with radiosurgery alone to melanoma brain metastases. Radiation Oncology, 2015, 10, 248.	2.7	10
78	Intracranial control after Cyberknife radiosurgery to the resection bed for large brain metastases. Radiation Oncology, 2015, 10, 221.	2.7	19
79	Factors Associated with Increased Survival after Surgical Resection of Glioblastoma in Octogenarians. PLoS ONE, 2015, 10, e0127202.	2.5	20
80	NIMG-05IDENTIFICATION OF IMAGING SIGNATURES OF THE EPIDERMAL GROWTH FACTOR RECEPTOR VARIANT III (EGFRVIII) IN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v154.1-v154.	1.2	5
81	Association of dynamic susceptibility contrast enhanced MR Perfusion parameters with prognosis in elderly patients with glioblastomas. European Radiology, 2015, 25, 2738-2744.	4.5	15
82	Sprouty2 Drives Drug Resistance and Proliferation in Glioblastoma. Molecular Cancer Research, 2015, 13, 1227-1237.	3.4	29
83	Automated Tumor Volumetry Using Computer-Aided Image Segmentation. Academic Radiology, 2015, 22, 653-661.	2.5	39
84	Pattern Analysis of Dynamic Susceptibility Contrast-enhanced MR Imaging Demonstrates Peritumoral Tissue Heterogeneity. Radiology, 2014, 273, 502-510.	7.3	86
85	lsoform-level gene signature improves prognostic stratification and accurately classifies glioblastoma subtypes. Nucleic Acids Research, 2014, 42, e64-e64.	14.5	57
86	Use of magnetic perfusion-weighted imaging to determine epidermal growth factor receptor variant III expression in glioblastoma. Neuro-Oncology, 2012, 14, 613-623.	1.2	66
87	Reversion of the ErbB malignant phenotype and the DNA damage response. Experimental and Molecular Pathology, 2012, 93, 324-333.	2.1	4
88	IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 2012, 483, 474-478.	27.8	1,693
89	Treatment of steroid refractory, Gamma Knife related radiation necrosis with bevacizumab: Case report and review of the literature. Clinical Neurology and Neurosurgery, 2011, 113, 798-802.	1.4	21
90	Clinically silent somatotroph adenomas are common. European Journal of Endocrinology, 2011, 165, 39-44.	3.7	55

#	Article	IF	CITATIONS
91	Proton Magnetic Resonance Spectroscopy in Differentiating Glioblastomas From Primary Cerebral Lymphomas and Brain Metastases. Journal of Computer Assisted Tomography, 2010, 34, 836-841.	0.9	67
92	Activated EGFR signaling increases proliferation, survival, and migration and blocks neuronal differentiation in post-natal neural stem cells. Journal of Neuro-Oncology, 2010, 97, 323-337.	2.9	104
93	Role of Proton Magnetic Resonance Spectroscopy in Differentiating Oligodendrogliomas from Astrocytomas. Journal of Neuroimaging, 2010, 20, 3-8.	2.0	30
94	Posttreatment Recurrence of Malignant Brain Neoplasm: Accuracy of Relative Cerebral Blood Volume Fraction in Discriminating Low from High Malignant Histologic Volume Fraction. Radiology, 2009, 250, 887-896.	7.3	86
95	The protein tyrosine phosphatase SHP-2 is required for EGFRvIII oncogenic transformation in human glioblastoma cells. Experimental Cell Research, 2009, 315, 2343-2357.	2.6	42
96	Role of monocyte chemoattractant proteinâ€1 (MCPâ€1/CCL2) in migration of neural progenitor cells toward glial tumors. Journal of Neuroscience Research, 2009, 87, 1547-1555.	2.9	61
97	Magnetic resonance perfusion-weighted imaging defines angiogenic subtypes of oligodendroglioma according to 1p19q and EGFR status. Journal of Neuro-Oncology, 2009, 92, 373-386.	2.9	60
98	Differentiation between glioblastomas and solitary brain metastases using diffusion tensor imaging. NeuroImage, 2009, 44, 653-660.	4.2	141
99	Gene silencing for epidermal growth factor receptor variant III induces cell-specific cytotoxicity. Molecular Cancer Therapeutics, 2008, 7, 3586-3597.	4.1	28
100	Intraaxial Brain Masses: MR Imaging–based Diagnostic Strategy—Initial Experience. Radiology, 2007, 243, 539-550.	7.3	207
101	EGFR inhibition in glioblastoma cells induces C2/M arrest and is independent of p53. Cancer Biology and Therapy, 2007, 6, 571-579.	3.4	10
102	Prediction of oligodendroglial tumor subtype and grade using perfusion weighted magnetic resonance imaging. Journal of Neurosurgery, 2007, 107, 600-609.	1.6	63
103	Anticancer effects of fenretinide in human medulloblastoma. Cancer Letters, 2006, 231, 262-269.	7.2	14
104	Resident training in neurosurgical oncology: results of the survey of North American training programs by the AANS/CNS Section on Tumors. Journal of Neuro-Oncology, 2006, 77, 241-246.	2.9	13
105	Actinomycotic brain infection: registered diffusion, perfusion MR imaging and MR spectroscopy. Neuroradiology, 2006, 48, 346-350.	2.2	25
106	Experimental Traumatic Brain Injury Modulates the Survival, Migration, and Terminal Phenotype of Transplanted Epidermal Growth Factor Receptor-activated Neural Stem Cells. Neurosurgery, 2005, 56, 163-171.	1.1	63
107	Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. Journal of Magnetic Resonance Imaging, 2005, 22, 475-482.	3.4	156
108	The Ability of Protein Tyrosine Phosphatase SHP-1 to Suppress NFκB Can Be Inhibited by Dominant Negative Mutant of SIRPα. DNA and Cell Biology, 2004, 23, 175-182.	1.9	16

#	Article	IF	CITATIONS
109	Sp1 Is Involved in Akt-mediated Induction of VEGF Expression through an HIF-1–independent Mechanism. Molecular Biology of the Cell, 2004, 15, 4841-4853.	2.1	206
110	SHP-2-Dependent Mitogen-Activated Protein Kinase Activation Regulates EGFRvIII but not Wild-Type Epidermal Growth Factor Receptor Phosphorylation and Glioblastoma Cell Survival. Cancer Research, 2004, 64, 8292-8298.	0.9	42
111	Distinct Domains in the SHP-2 Phosphatase Differentially Regulate Epidermal Growth Factor Receptor/NF-κB Activation through Gab1 in Glioblastoma Cells. Molecular and Cellular Biology, 2004, 24, 823-836.	2.3	68
112	Transcriptional Regulation of Signal Regulatory Protein α1 Inhibitory Receptors by Epidermal Growth Factor Receptor Signaling. Cancer Research, 2004, 64, 6444-6452.	0.9	7
113	Constitutive EGFR signaling confers a motile phenotype to neural stem cells. Molecular and Cellular Neurosciences, 2003, 24, 1116-1130.	2.2	104
114	Dominant Negative Form of Signal-regulatory Protein-α (SIRPα/SHPS-1) Inhibits Tumor Necrosis Factor-mediated Apoptosis by Activation of NF-κB. Journal of Biological Chemistry, 2003, 278, 3809-3815.	3.4	32
115	Receptor Tyrosine Kinase Signaling In Gliomagenesis: Pathobiology And Therapeutic Approaches. Cancer Biology and Therapy, 2003, 2, 330-342.	3.4	51
116	Neural Stem Cell Biology May Be Well Suited for Improving Brain Tumor Therapies. Cancer Journal (Sudbury, Mass), 2003, 9, 189-204.	2.0	58
117	Mitogenic Signaling Cascades in Glial Tumors. Neurosurgery, 2003, 52, 1425-1435.	1.1	56
118	PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter. Cancer Research, 2003, 63, 236-41.	0.9	120
119	The tyrosine phosphatase SHP-2 is required for mediating phosphatidylinositol 3-kinase/Akt activation by growth factors. Oncogene, 2001, 20, 6018-6025.	5.9	145
120	Rationally designed anti-HER2/neu peptide mimetic disables P185HER2/neu tyrosine kinases in vitro and in vivo. Nature Biotechnology, 2000, 18, 194-198.	17.5	175
121	Inhibition of EGFR-mediated phosphoinositide-3-OH kinase (PI3-K) signaling and glioblastoma phenotype by Signal-Regulatory Proteins (SIRPs). Oncogene, 2000, 19, 3999-4010.	5.9	60
122	Symptomatic Lateral Ventricular Ependymal Cysts: Criteria for Distinguishing These Rare Cysts from Other Symptomatic Cysts of the Ventricles: Case Report. Neurosurgery, 2000, 46, 1229-1233.	1.1	35
123	Expression of Oncogenic Epidermal Growth Factor Receptor Family Kinases Induces Paclitaxel Resistance and Alters β-Tubulin Isotype Expression. Journal of Biological Chemistry, 2000, 275, 17358-17363.	3.4	99
124	Domain-specific Interactions between the p185 and Epidermal Growth Factor Receptor Kinases Determine Differential Signaling Outcomes. Journal of Biological Chemistry, 1999, 274, 574-583.	3.4	29
125	Sustained Mitogen-Activated Protein Kinase Activation Is Induced by Transforming erbB Receptor Complexes. DNA and Cell Biology, 1999, 18, 731-741.	1.9	35
126	Inhibition of a naturally occurring EGFR oncoprotein by the p185neu ectodomain: implications for subdomain contributions to receptor assembly. Oncogene, 1998, 16, 1197-1207.	5.9	52

#	Article	IF	CITATIONS
127	Absence of autophosphorylation site Y882 in the p185neu oncogene product correlates with a reduction of transforming potential. Oncogene, 1998, 16, 2835-2842.	5.9	24
128	Identification of pl85 ^{neu} Sequences Required for Monoclonal Antibody- or Ligand-Mediated Receptor Signal Attenuation. DNA and Cell Biology, 1997, 16, 1395-1405.	1.9	6
129	Relationship of p215BRCA1 to tyrosine kinase signaling pathways and the cell cycle in normal and transformed cells. Oncogene, 1997, 14, 2863-2869.	5.9	25
130	Identification of a 140 kDa protein of rat presynaptic terminal membranes encompassing the active zones. Brain Research, 1995, 700, 261-270.	2.2	2
131	The application of 5-bromodeoxyuridine in the management of CNS tumors. Journal of Neuro-Oncology, 1994, 20, 81-95.	2.9	16