Shuangshuang Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/6452664/shuangshuang-chen-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

97 2,681 30 48 g-index

100 3,127 6.6 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
97	Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. <i>Biomaterials</i> , 2009 , 30, 6041-7	15.6	419
96	Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa. <i>Green Chemistry</i> , 2007 , 9, 1191	10	168
95	Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Advances, 2012, 2, 12515	3.7	106
94	Facile synthesis of superparamagnetic Fe3O4@polyphosphazene@Au shells for magnetic resonance imaging and photothermal therapy. <i>ACS Applied Materials & Description of the Property of the Page 1</i> (1998) Facility of the Page 1999 Facility of the Page 199	9.5	102
93	Creating superhydrophobic surfaces with flowery structures on nickel substrates through a wet-chemical-process. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4772		77
92	One-pot synthesis of highly magnetically sensitive nanochains coated with a highly cross-linked and biocompatible polymer. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 8476-9	16.4	69
91	Transparent, thermally and mechanically stable superhydrophobic coating prepared by an electrochemical template strategy. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3801-3807	13	61
90	Synthesis of Superheat-Resistant Polyimides with High Tg and Low Coefficient of Thermal Expansion by Introduction of Strong Intermolecular Interaction. <i>Macromolecules</i> , 2018 , 51, 10127-1013.	5 ^{5.5}	60
89	Highly cross-linked and biocompatible polyphosphazene-coated superparamagnetic Fe3O4 nanoparticles for magnetic resonance imaging. <i>Langmuir</i> , 2013 , 29, 9156-63	4	58
88	Superhydrophobic modification of polyimide films based on gold-coated porous silver nanostructures and self-assembled monolayers. <i>Journal of Materials Chemistry</i> , 2006 , 16, 4504		58
87	Fluorescent and cross-linked organic-inorganic hybrid nanoshells for monitoring drug delivery. <i>ACS Applied Materials & Design Research (No. 1990)</i> 1 (1997) 1 (1997) 1 (1997) 1 (1997) 1 (1997) 1 (1997) 2 (1997) 1 (1997)	9.5	55
86	Photosensitive Liquid-Crystalline Supramolecules Self-Assembled from Ionic Liquid Crystal and Polyelectrolyte for Laser-Induced Optical Anisotropy. <i>Macromolecules</i> , 2008 , 41, 3884-3892	5.5	55
85	Thermally tunable circular dichroism and circularly polarized luminescence of tetraphenylethene with two cholesterol pendants. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 6997-7003	7.1	51
84	The ionic liquid-associated synthesis of a cellulose/SWCNT complex and its remarkable biocompatibility. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3612		51
83	"Fastening" porphyrin in highly cross-linked polyphosphazene hybrid nanoparticles: powerful red fluorescent probe for detecting mercury ion. <i>Langmuir</i> , 2014 , 30, 4458-64	4	46
82	Superhydrophobic surface created by the silver mirror reaction and its drag-reduction effect on water. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3301		46
81	Biodegradable Cyclomatrix Polyphosphazene Nanoparticles: A Novel pH-Responsive Drug Self-Framed Delivery System. <i>ACS Applied Materials & Description</i> (2018), 10, 25983-25993	9.5	43

(2013-2015)

80	Self-healing polymers with PEG oligomer side chains based on multiple H-bonding and adhesion properties. <i>Polymer Chemistry</i> , 2015 , 6, 5086-5092	4.9	43
79	Electro-responsively reversible transition of polythiophene films from superhydrophobicity to superhydrophilicity. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 14736-43	9.5	40
78	Photoorientation of Liquid Crystalline Azo-Dendrimer by Nanosecond Pulsed Laser for Liquid Crystal Alignment. <i>Macromolecules</i> , 2007 , 40, 3306-3312	5.5	40
77	Preparation of aromatic polyimides highly soluble in conventional solvents. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 229-234	2.5	39
76	Water-triggered self-assembly polycondensation for the one-pot synthesis of cyclomatrix polyphosphazene nanoparticles from amino acid ester. <i>Chemical Communications</i> , 2015 , 51, 8373-6	5.8	38
75	One-pot synthesis of highly cross-linked fluorescent polyphosphazene nanoparticles for cell imaging. <i>Polymer Chemistry</i> , 2015 , 6, 3155-3163	4.9	37
74	Oxidoreductase-Initiated Radical Polymerizations to Design Hydrogels and Micro/Nanogels: Mechanism, Molding, and Applications. <i>Advanced Materials</i> , 2018 , 30, e1705668	24	36
73	Formation of Helical Phases in Achiral Block Copolymers by Simple Addition of Small Chiral Additives. <i>Macromolecules</i> , 2014 , 47, 6547-6553	5.5	35
72	Solvent polarity driven helicity inversion and circularly polarized luminescence in chiral aggregation induced emission fluorophores. <i>Chemical Science</i> , 2020 , 11, 9989-9993	9.4	35
71	Preparation of aggregation-induced emission dots for long-term two-photon cell imaging. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 3091-3097	7-3	32
70	A Facile Strategy for Preparation of Fluorescent SWNT Complexes with High Quantum Yields Based on Ion Exchange. <i>Advanced Functional Materials</i> , 2008 , 18, 857-864	15.6	32
69	Large-Scale Production of Homogeneous Helical Amylose/SWNTs Complexes with Good Biocompatibility. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 2180-2184	4.8	31
68	Core@shell nanostructures for photothermal conversion: Tunable noble metal nanoshells on cross-linked polymer submicrospheres. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5493		30
67	Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold. <i>Biomaterials Science</i> , 2015 , 3, 85-93	7.4	29
66	The fabrication of helical fibers with circularly polarized luminescence via ionic linkage of binaphthol and tetraphenylethylene derivatives. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 1497-1503	7.1	28
65	Multifunctional polypyrene/silica hybrid coatings with stable excimer fluorescence and robust superhydrophobicity derived from electrodeposited polypyrene films. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 2086-2092	7.1	26
64	Strain sensor based on a flexible polyimide ionogel for application in high- and low-temperature environments. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9625-9632	7.1	25
63	Polydiacetylene-embedded supramolecular electrospun fibres for a colourimetric sensor of organic amine vapour. <i>RSC Advances</i> , 2013 , 3, 22841	3.7	25

62	Preparation and cellular uptake of pH-dependent fluorescent single-wall carbon nanotubes. <i>Chemistry - A European Journal</i> , 2010 , 16, 556-61	4.8	25
61	Electrochemically Tunable Cell Adsorption on a Transparent and Adhesion-Switchable Superhydrophobic Polythiophene Film. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 1205-10	4.8	24
60	Designing 3D Biological Surfaces via the Breath-Figure Method. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701043	10.1	22
59	Double-Helical Nanostructures with Controllable Handedness in Bulk Diblock Copolymers. Angewandte Chemie - International Edition, 2018 , 57, 15148-15152	16.4	22
58	Self-Healable, Recyclable, and Ultrastrong Adhesive Ionogel for Multifunctional Strain Sensor. <i>ACS Applied Materials & Distributed & </i>	9.5	20
57	Reversible Switching of Water-Droplet Adhesion on a Superhydrophobic Polythiophene Surface. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1400011	4.6	19
56	Targeted grafting of thermoresponsive polymers from a penetrative honeycomb structure for cell sheet engineering. <i>Soft Matter</i> , 2015 , 11, 7420-7	3.6	18
55	Injectable and cross-linkable polyphosphazene hydrogels for space-filling scaffolds. <i>Polymer Chemistry</i> , 2015 , 6, 143-149	4.9	16
54	Low Dielectric Constant Polyimide Hybrid Films Prepared by in Situ Blow-Balloon Method. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 2189-2196	4.3	16
53	-Inspired Circular Polarized Luminescence in a Solid Block Copolymer Film with a Controllable Helix. <i>ACS Nano</i> , 2020 , 14, 8939-8948	16.7	15
52	Synthesis of highly transparent and heat-resistant polyimides containing bulky pendant moieties. <i>Polymer International</i> , 2019 , 68, 1186-1193	3.3	14
51	Process Analysis on Preparation of Cyclobutanetetracarboxylic Dianhydride in a Photomicroreactor within GasIliquid Taylor Flow. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 2476-2485	3.9	14
50	A study on the micromixing performance in microreactors for polymer solutions. <i>AICHE Journal</i> , 2018 , 64, 3479-3490	3.6	14
49	Ionic liquid containing electron-rich, porous polyphosphazene nanoreactors catalyze the transformation of CO2 to carbonates. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20916-20925	13	14
48	Role of Intrinsic Factors of Polyimides in Glass Transition Temperature: An Atomistic Investigation. Journal of Physical Chemistry B, 2019 , 123, 8569-8579	3.4	13
47	Incorporating bis-benzimidazole into polyimide chains for effectively improving thermal resistance and dimensional stability. <i>Polymer International</i> , 2020 , 69, 93-99	3.3	13
46	One-pot synthesis of fluorescent and cross-linked polyphosphazene nanoparticles for highly sensitive and selective detection of dopamine in body fluids. <i>RSC Advances</i> , 2015 , 5, 92762-92768	3.7	12
45	In situ growth of a polyphosphazene nanoparticle coating on a honeycomb surface: facile formation of hierarchical structures for bioapplication. <i>Chemical Communications</i> , 2015 , 51, 5698-701	5.8	12

(2018-2020)

44	Polyphosphazene-Based Drug Self-Framed Delivery System as a Universal Intelligent Platform for Combination Therapy against Multidrug-Resistant Tumors ACS Applied Bio Materials, 2020 , 3, 2284-22	29 4 .1	11	
43	Cell-imprinted biomimetic interface for intelligent recognition and efficient capture of CTCs. <i>Biomaterials Science</i> , 2019 , 7, 4027-4035	7.4	11	
42	Controllable and mass fabrication of highly luminescent N-doped carbon dots for bioimaging applications. <i>RSC Advances</i> , 2015 , 5, 22343-22349	3.7	11	
41	Fabrication of reduced graphene oxide hybrid materials that exhibit strong fluorescence. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14868		11	
40	One-Pot Synthesis of Highly Magnetically Sensitive Nanochains Coated with a Highly Cross-Linked and Biocompatible Polymer. <i>Angewandte Chemie</i> , 2010 , 122, 8654-8657	3.6	11	
39	Reversible Dendritic-Crystal-Reinforced Polymer Gel for Bioinspired Adaptable Adhesive. <i>Advanced Materials</i> , 2021 , 33, e2103174	24	11	
38	Dual-responsive polyphosphazene as a common platform for highly efficient drug self-delivery. Journal of Materials Chemistry B, 2019 , 7, 4319-4327	7-3	10	
37	Process Characteristics and Rheological Properties of Free Radical Polymerization in Microreactors. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 10922-10934	3.9	10	
36	Effects of concave and convex substrate curvature on cell mechanics and the cytoskeleton. <i>Chinese Chemical Letters</i> , 2017 , 28, 818-826	8.1	10	
35	Anisotropic Fluorescence Emission of Ionic Complex Induced by the Orientation of Azobenzene Unit. <i>Macromolecules</i> , 2013 , 46, 3376-3383	5.5	9	
34	Thermostable birefringent copolyimide films based on azobenzene-containing pyrimidine diamines. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 10375-10382	7.1	8	
33	Synthesis and properties of polyimides from 1,3-bis(4-piperidino-l,S-naphthalic anhydride)propane. <i>Polymer Bulletin</i> , 2003 , 49, 417-423	2.4	8	
32	Perspectives on the Next Generation of Sunscreen: Safe, Broadband, and Long-Term Photostability 2019 , 1, 336-343		7	
31	Comparison of hybrid polyimide films with silica and organosilica obtained via solgel process. <i>High Performance Polymers</i> , 2017 , 29, 1049-1057	1.6	7	
30	Anisotropic electronic properties of Ni nanowires in oriented mesoporous silica film. <i>Applied Physics Letters</i> , 2009 , 95, 153102	3.4	7	
29	The horizon of bone organoid: A perspective on construction and application <i>Bioactive Materials</i> , 2022 , 18, 15-25	16.7	7	
28	A Computational Probe into the Dissolution Inhibitation Effect of Diazonaphthoquinone Photoactive Compounds on Positive Tone Photosensitive Polyimides. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 1704-1714	3.8	6	
27	Mesogen-co-polymerized transparent polyimide as a liquid-crystal alignment layer with enhanced anchoring energy <i>RSC Advances</i> , 2018 , 8, 11119-11126	3.7	6	

26	A strategy for the synthesis of cyclomatrix-polyphosphazene nanoparticles from non-aromatic monomers. <i>RSC Advances</i> , 2016 , 6, 75552-75561	3.7	6
25	Reversible Micrometer-Scale Spiral Self-Assembly in Liquid Crystalline Block Copolymer Film with Controllable Chiral Response. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12308-12312	16.4	6
24	Control of the alignment of liquid crystal molecules on a sequence-polymerized film by surface migration and polarized light irradiation. <i>Polymer Chemistry</i> , 2017 , 8, 7316-7324	4.9	5
23	Gradient Photothermal Field for Precisely Directing Cell Sheet Detachment. <i>Advanced Biology</i> , 2019 , 3, e1800334	3.5	5
22	Durable superamphiphobic silica aerogel surfaces for the culture of 3D cellular spheroids. <i>National Science Review</i> , 2019 , 6, 1255-1265	10.8	5
21	Formation and properties of liquid crystalline supramolecules with anisotropic fluorescence emission. <i>Polymer Chemistry</i> , 2014 , 5, 2567	4.9	5
20	A photosensitive fluorinated ionic complex with tunable surface wetting properties: mesostructure and photosensitivity. <i>Polymer Chemistry</i> , 2011 , 2, 2528	4.9	5
19	PREPARATION OF TIN OXIDE NANOPARTICLES BY LASER ABLATION IN SOLUTION. <i>International Journal of Nanoscience</i> , 2006 , 05, 259-264	0.6	5
18	Synthesis of highly transparent and thermally stable copolyimide with fluorine-containing dianhydride and alicyclic dianhydride. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 48603	2.9	5
17	A facile method to fabricate tough hydrogel with ultra-wide adjustable stiffness, stress, and fast recoverability. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 1469-1474	2.6	5
16	High-Level Extraction of Recyclable Nanocatalysts by Using Polyphosphazene Microparticles. <i>Langmuir</i> , 2019 , 35, 5168-5175	4	4
15	Precipitation supramolecular complex for photoinduced anisotropic material with dual mesogenic units. <i>Polymer</i> , 2011 , 52, 3243-3250	3.9	4
14	Hierarchical self-assembly of helical amylose/SWNTs complex. <i>Science in China Series B: Chemistry</i> , 2008 , 51, 269-274		4
13	Reversible Micrometer-Scale Spiral Self-Assembly in Liquid Crystalline Block Copolymer Film with Controllable Chiral Response. <i>Angewandte Chemie</i> , 2021 , 133, 12416-12420	3.6	4
12	A Near-Infrared-Triggered Dynamic Wrinkling Biointerface for Noninvasive Harvesting of Practical Cell Sheets. <i>ACS Applied Materials & Acs Applied & Acs Appli</i>	9.5	4
11	Double-Helical Nanostructures with Controllable Handedness in Bulk Diblock Copolymers. <i>Angewandte Chemie</i> , 2018 , 130, 15368-15372	3.6	4
10	Real-Time Profiling of Anti-(Epithelial Cell Adhesion Molecule)-Based Immune Capture from Molecules to Cells Using Multiparameter Surface Plasmon Resonance. <i>Langmuir</i> , 2019 , 35, 1040-1046	4	3
9	Ductile Polyimide/Reduced Graphene Oxide Nanohybrid Films with Porous Structure Fabricated by a Green Hydrogel Strategy. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 914-923	4.3	2

LIST OF PUBLICATIONS

8	Single Polar Cell Trapping Based on the Breath Figure Method. ACS Omega, 2019, 4, 20223-20229	3.9	2	
7	Enhancement of the Photoalignment Stability of Block Copolymer Brushes by Anchor Segments. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1800153	2.6	2	
6	Molecular Chirality and Morphological Structural Chirality of Exogenous Chirality-Induced Liquid Crystalline Block Copolymers. <i>Macromolecules</i> , 2022 , 55, 1566-1575	5.5	2	
5	High throughput profiling drug response and apoptosis of single polar cells. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 8614-8622	7.3	1	
4	Continuous microflow synthesis of dimethyl-substituted cyclobutanetetracarboxylic dianhydrides and its application on polyimide films. <i>Journal of Flow Chemistry</i> , 2022 , 12, 91	3.3	0	
3	Self-Assembled GO Honeycomb Microarray for Selective Cancer Cell Capture and Single Cell Analysis of Proteolytic Expression. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2001006	10.1	O	
2	Close to Real: Large-Volume 3D Cell Spheroids on a Superamphiphobic Surface. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100039	4.6	0	
1	Highly Integrated Cell-Imprinted Biomimetic Interface for All-in-One Diagnosis of Heterogeneous Circulating Tumor Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 19603-19612	9.5	O	