
Yi-Ming Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6451841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chinese CO2 emission flows have reversed since the global financial crisis. Nature Communications, 2017, 8, 1712.	5.8	678
2	Consumption-based emission accounting for Chinese cities. Applied Energy, 2016, 184, 1073-1081.	5.1	519
3	Relationships between oil price shocks and stock market: An empirical analysis from China. Energy Policy, 2008, 36, 3544-3553.	4.2	507
4	Analyzing impact factors of CO2 emissions using the STIRPAT model. Environmental Impact Assessment Review, 2006, 26, 377-395.	4.4	485
5	Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China. Applied Energy, 2013, 106, 65-71.	5.1	447
6	Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 2020, 11, 5172.	5.8	420
7	Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis. Energy Policy, 2007, 35, 5892-5900.	4.2	396
8	Potential impacts of industrial structure on energy consumption and CO2 emission: a case study of Beijing. Journal of Cleaner Production, 2015, 103, 455-462.	4.6	353
9	Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030. Journal of Cleaner Production, 2017, 142, 2227-2236.	4.6	346
10	Unequal household carbon footprints in China. Nature Climate Change, 2017, 7, 75-80.	8.1	345
11	China's regional industrial energy efficiency and carbon emissions abatement costs. Applied Energy, 2014, 130, 617-631.	5.1	343
12	An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect. Applied Energy, 2010, 87, 1804-1814.	5.1	311
13	The crude oil market and the gold market: Evidence for cointegration, causality and price discovery. Resources Policy, 2010, 35, 168-177.	4.2	304
14	Spillover effect of US dollar exchange rate on oil prices. Journal of Policy Modeling, 2008, 30, 973-991.	1.7	300
15	The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China's residents. Energy Policy, 2007, 35, 247-257.	4.2	297
16	Role of renewable energy in China's energy security and climate change mitigation: An index decomposition analysis. Renewable and Sustainable Energy Reviews, 2018, 90, 187-194.	8.2	275
17	An empirical analysis of energy efficiency in China's iron and steel sector. Energy, 2007, 32, 2262-2270.	4.5	271
18	Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology. Omega, 2013, 41, 517-524.	3.6	270

#	Article	IF	CITATIONS
19	China's carbon emissions from urban and rural households during 1992–2007. Journal of Cleaner Production, 2011, 19, 1754-1762.	4.6	269
20	Changes in carbon intensity in China: Empirical findings from 1980–2003. Ecological Economics, 2007, 62, 683-691.	2.9	249
21	Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach. Energy Policy, 2019, 134, 110946.	4.2	243
22	The impact of household consumption on energy use and CO2 emissions in China. Energy, 2011, 36, 656-670.	4.5	239
23	Policy and Management of Carbon Peaking and Carbon Neutrality: A Literature Review. Engineering, 2022, 14, 52-63.	3.2	236
24	Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis. Applied Energy, 2013, 104, 105-116.	5.1	232
25	Economic development and converging household carbon footprints in China. Nature Sustainability, 2020, 3, 529-537.	11.5	224
26	Regional total factor energy efficiency: An empirical analysis of industrial sector in China. Applied Energy, 2012, 97, 115-123.	5.1	222
27	Pattern changes in determinants of Chinese emissions. Environmental Research Letters, 2017, 12, 074003.	2.2	217
28	How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development. Energy Policy, 2011, 39, 2407-2415.	4.2	216
29	Regional allocation of CO2 emissions allowance over provinces in China by 2020. Energy Policy, 2013, 54, 214-229.	4.2	213
30	Short term electricity load forecasting using a hybrid model. Energy, 2018, 158, 774-781.	4.5	212
31	Multi-regional input–output model for regional energy requirements and CO2 emissions in China. Energy Policy, 2007, 35, 1685-1700.	4.2	202
32	Potential of energy savings and CO2 emission reduction in China's iron and steel industry. Applied Energy, 2018, 226, 862-880.	5.1	202
33	Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression. Applied Energy, 2017, 191, 521-530.	5.1	200
34	A comparative analysis of China's regional energy and emission performance: Which is the better way to deal with undesirable outputs?. Energy Policy, 2012, 46, 574-584.	4.2	199
35	The impact of government policy on preference for NEVs: The evidence from China. Energy Policy, 2013, 61, 382-393.	4.2	197
36	What induced China's energy intensity to fluctuate: 1997–2006?. Energy Policy, 2007, 35, 4640-4649.	4.2	196

#	Article	IF	CITATIONS
37	Potential impact of (CET) carbon emissions trading on China's power sector: A perspective from different allowance allocation options. Energy, 2010, 35, 3921-3931.	4.5	188
38	Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy Policy, 2021, 151, 112171.	4.2	183
39	An overview of climate change vulnerability: a bibliometric analysis based on Web of Science database. Natural Hazards, 2014, 74, 1649-1666.	1.6	170
40	A proposed global layout of carbon capture and storage in line with a 2 °C climate target. Nature Climate Change, 2021, 11, 112-118.	8.1	169
41	Carbon emission coefficient measurement of the coal-to-power energy chain in China. Applied Energy, 2014, 114, 290-300.	5.1	168
42	China's energy consumption in the building sector: A life cycle approach. Energy and Buildings, 2015, 94, 240-251.	3.1	168
43	Carbon taxation policy in China: How to protect energy- and trade-intensive sectors?. Journal of Policy Modeling, 2007, 29, 311-333.	1.7	161
44	China's regional energy and environmental efficiency: A Range-Adjusted Measure based analysis. Applied Energy, 2013, 112, 1403-1415.	5.1	158
45	Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition. Energy Policy, 2014, 66, 630-644.	4.2	156
46	Carbon price volatility: Evidence from EU ETS. Applied Energy, 2011, 88, 590-598.	5.1	155
47	Energy poor or fuel poor: What are the differences?. Energy Policy, 2014, 68, 476-481.	4.2	152
48	Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis. Applied Energy, 2013, 101, 323-332.	5.1	150
49	Energy poverty in China: An index based comprehensive evaluation. Renewable and Sustainable Energy Reviews, 2015, 47, 308-323.	8.2	141
50	Distributional effects of carbon taxation. Applied Energy, 2016, 184, 1123-1131.	5.1	137
51	Can market oriented economic reforms contribute to energy efficiency improvement? Evidence from China. Energy Policy, 2007, 35, 2287-2295.	4.2	136
52	Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings. Omega, 2016, 63, 48-59.	3.6	136
53	Energy systems for climate change mitigation: A systematic review. Applied Energy, 2020, 263, 114602.	5.1	135
54	China's farewell to coal: A forecast of coal consumption through 2020. Energy Policy, 2015, 86, 444-455.	4.2	134

#	Article	IF	CITATIONS
55	Environmental benefits from ridesharing: A case of Beijing. Applied Energy, 2017, 191, 141-152.	5.1	125
56	Cooking fuel choice in rural China: results from microdata. Journal of Cleaner Production, 2017, 142, 538-547.	4.6	124
57	Distributional impacts of taxing carbon in China: Results from the CEEPA model. Applied Energy, 2012, 92, 545-551.	5.1	118
58	The assessment of vulnerability to natural disasters in China by using the DEA method. Environmental Impact Assessment Review, 2004, 24, 427-439.	4.4	115
59	Is China's carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence. Applied Energy, 2015, 142, 229-239.	5.1	113
60	A novel modeling based real option approach for CCS investment evaluation under multiple uncertainties. Applied Energy, 2014, 113, 1059-1067.	5.1	112
61	How to peak carbon emissions in China's power sector: A regional perspective. Energy Policy, 2018, 120, 365-381.	4.2	112
62	Air emissions perspective on energy efficiency: An empirical analysis of China's coastal areas. Applied Energy, 2017, 185, 604-614.	5.1	107
63	Future scenarios for energy consumption and carbon emissions due to demographic transitions in Chinese households. Nature Energy, 2018, 3, 109-118.	19.8	107
64	A multi-regional input-output table mapping China's economic outputs and interdependencies in 2012. Scientific Data, 2018, 5, 180155.	2.4	105
65	Climate policy modeling: An online SCI-E and SSCI based literature review. Omega, 2015, 57, 70-84.	3.6	103
66	China's Energy Consumption in the New Normal. Earth's Future, 2018, 6, 1007-1016.	2.4	101
67	Accounting process-related CO2 emissions from global cement production under Shared Socioeconomic Pathways. Journal of Cleaner Production, 2018, 184, 451-465.	4.6	99
68	Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach. European Journal of Operational Research, 2018, 269, 35-50.	3.5	96
69	Technology roadmap study on carbon capture, utilization and storage in China. Energy Policy, 2013, 59, 536-550.	4.2	93
70	A PSO–GA optimal model to estimate primary energy demand of China. Energy Policy, 2012, 42, 329-340.	4.2	92
71	Can China achieve its carbon intensity target by 2020 while sustaining economic growth?. Ecological Economics, 2015, 119, 209-216.	2.9	92
72	Climate protection and China's energy security: Win–win or tradeoff. Applied Energy, 2012, 97, 157-163.	5.1	90

#	Article	IF	CITATIONS
73	Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison. Applied Energy, 2016, 184, 790-799.	5.1	89
74	An adaptive hybrid model for short term electricity price forecasting. Applied Energy, 2020, 258, 114087.	5.1	89
75	Life cycle environmental assessment of electric and internal combustion engine vehicles in China. Journal of Cleaner Production, 2021, 285, 124899.	4.6	89
76	Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization. Applied Energy, 2012, 92, 552-562.	5.1	87
77	Residential energy-related carbon emissions in urban and rural China during 1996–2012: From the perspective of five end-use activities. Energy and Buildings, 2015, 96, 201-209.	3.1	87
78	The influence of climate change on CO 2 (carbon dioxide) emissions: an empirical estimation based on Chinese provincial panel data. Journal of Cleaner Production, 2016, 131, 667-677.	4.6	87
79	Carbon Price Analysis Using Empirical Mode Decomposition. Computational Economics, 2015, 45, 195-206.	1.5	86
80	China's fiscal decentralization and environmental quality: theory and an empirical study. Environment and Development Economics, 2020, 25, 159-181.	1.3	86
81	Responsibility accounting in carbon allocation: A global perspective. Applied Energy, 2014, 130, 122-133.	5.1	84
82	Integrated weighting approach to carbon emission quotas: an application case of Beijing-Tianjin-Hebei region. Journal of Cleaner Production, 2016, 131, 448-459.	4.6	84
83	Public perception of climate change in China: results from the questionnaire survey. Natural Hazards, 2013, 69, 459-472.	1.6	83
84	ls CO2 emission a side effect of financial development? An empirical analysis for China. Environmental Science and Pollution Research, 2016, 23, 21041-21057.	2.7	83
85	Impacts of household income change on CO 2 emissions: An empirical analysis of China. Journal of Cleaner Production, 2017, 157, 190-200.	4.6	83
86	Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator. Energy Economics, 2016, 54, 50-59.	5.6	81
87	Impact factors of household energy-saving behavior: An empirical study of Shandong Province in China. Journal of Cleaner Production, 2018, 185, 285-298.	4.6	81
88	One day ahead wind speed forecasting: A resampling-based approach. Applied Energy, 2016, 178, 886-901.	5.1	80
89	Hilbert Spectra and Empirical Mode Decomposition: A Multiscale Event Analysis Method to Detect the Impact of Economic Crises on the European Carbon Market. Computational Economics, 2018, 52, 105-121.	1.5	80
90	Experimental comparison of impact of auction format on carbon allowance market. Renewable and Sustainable Energy Reviews, 2012, 16, 4148-4156.	8.2	78

#	Article	IF	CITATIONS
91	Assessment on the research trend of low-carbon energy technology investment: A bibliometric analysis. Applied Energy, 2016, 184, 960-970.	5.1	77
92	Green transition pathways for cement industry in China. Resources, Conservation and Recycling, 2021, 166, 105355.	5.3	77
93	Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage. Applied Energy, 2019, 252, 113483.	5.1	75
94	Carbon emissions quotas in the Chinese road transport sector: A carbon trading perspective. Energy Policy, 2017, 106, 298-309.	4.2	73
95	Clobal transition to low-carbon electricity: A bibliometric analysis. Applied Energy, 2017, 205, 57-68.	5.1	73
96	Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS. Applied Energy, 2012, 99, 97-108.	5.1	72
97	Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model. Energy Policy, 2014, 65, 701-707.	4.2	71
98	Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach. Applied Energy, 2016, 183, 984-994.	5.1	71
99	Assessing the policy impacts on non-ferrous metals industry's CO2 reduction: Evidence from China. Journal of Cleaner Production, 2018, 192, 252-261.	4.6	71
100	Self-preservation strategy for approaching global warming targets in the post-Paris Agreement era. Nature Communications, 2020, 11, 1624.	5.8	71
101	The shadow price of CO 2 emissions in China's iron and steel industry. Science of the Total Environment, 2017, 598, 272-281.	3.9	70
102	Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure. Energy, 2016, 113, 1231-1240.	4.5	69
103	Solid fuel use in rural China and its health effects. Renewable and Sustainable Energy Reviews, 2016, 60, 900-908.	8.2	69
104	A comparative analysis of the life cycle environmental emissions from wind and coal power: Evidence from China. Journal of Cleaner Production, 2020, 248, 119192.	4.6	69
105	Forecasting carbon price using a multiâ€objective least squares support vector machine with mixture kernels. Journal of Forecasting, 2022, 41, 100-117.	1.6	68
106	A hybrid self-adaptive Particle Swarm Optimization–Genetic Algorithm–Radial Basis Function model for annual electricity demand prediction. Energy Conversion and Management, 2015, 91, 176-185.	4.4	67
107	An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting. Journal of Forecasting, 2016, 35, 633-651.	1.6	67
108	Carbon capture and storage in China's power sector: Optimal planning under the 2°C constraint. Applied Energy, 2020, 263, 114694.	5.1	67

#	Article	IF	CITATIONS
109	Energy structure, marginal efficiency and substitution rate: An empirical study of China. Energy, 2007, 32, 935-942.	4.5	66
110	Carbon emissions intensity reduction target for China's power industry: An efficiency and productivity perspective. Journal of Cleaner Production, 2018, 197, 1022-1034.	4.6	66
111	An empirical analysis of the risk of crude oil imports in China using improved portfolio approach. Energy Policy, 2007, 35, 4190-4199.	4.2	65
112	The differences of carbon intensity reduction rate across 89 countries in recent three decades. Applied Energy, 2014, 113, 808-815.	5.1	65
113	An adaptive hybrid model for short term wind speed forecasting. Energy, 2020, 190, 115615.	4.5	65
114	Forecasting China's regional energy demand by 2030: A Bayesian approach. Resources, Conservation and Recycling, 2017, 127, 85-95.	5.3	63
115	How app-based ride-hailing services influence travel behavior: An empirical study from China. International Journal of Sustainable Transportation, 2020, 14, 554-568.	2.1	63
116	An integrated assessment of INDCs under Shared Socioeconomic Pathways: an implementation of C3IAM. Natural Hazards, 2018, 92, 585-618.	1.6	62
117	Review of models and actors in energy mix optimization – can leader visions and decisions align with optimum model strategies for our future energy systems?. Energy Strategy Reviews, 2012, 1, 5-18.	3.3	61
118	Urban energy consumption and CO2 emissions in Beijing: current and future. Energy Efficiency, 2015, 8, 527-543.	1.3	60
119	Spatial heterogeneity and driving forces of environmental productivity growth in China: Would it help to switch pollutant discharge fees to environmental taxes?. Journal of Cleaner Production, 2019, 223, 36-44.	4.6	60
120	Efficiency assessment of hydroelectric power plants in Canada: A multi criteria decision making approach. Energy Economics, 2014, 46, 112-121.	5.6	59
121	The effect of energy end-use efficiency improvement on China's energy use and CO2 emissions: a CGE model-based analysis. Energy Efficiency, 2009, 2, 243-262.	1.3	58
122	Comparison of China's oil import risk: Results based on portfolio theory and a diversification index approach. Energy Policy, 2009, 37, 3557-3565.	4.2	58
123	Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties. Energy Policy, 2017, 104, 23-32.	4.2	58
124	Energy technology roadmap for ethylene industry in China. Applied Energy, 2018, 224, 160-174.	5.1	58
125	Securitization of energy supply chains in China. Applied Energy, 2014, 123, 316-326.	5.1	55
126	China's primary energy demands in 2020: Predictions from an MPSO–RBF estimation model. Energy Conversion and Management, 2012, 61, 59-66.	4.4	54

#	Article	IF	CITATIONS
127	Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model. Energy Policy, 2012, 42, 521-529.	4.2	54
128	Including intangible costs into the cost-of-illness approach: a method refinement illustrated based on the PM2.5 economic burden in China. European Journal of Health Economics, 2019, 20, 501-511.	1.4	54
129	A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China. Applied Energy, 2016, 183, 1333-1345.	5.1	53
130	Selection of energy performance contracting business models: A behavioral decision-making approach. Renewable and Sustainable Energy Reviews, 2017, 72, 422-433.	8.2	53
131	Marginal abatement costs of CO2 emissions in the thermal power sector: A regional empirical analysis from China. Journal of Cleaner Production, 2018, 171, 163-174.	4.6	53
132	On selecting directions for directional distance functions in a non-parametric framework: a review. Annals of Operations Research, 2019, 278, 43-76.	2.6	52
133	An adaptive hybrid model for day-ahead photovoltaic output power prediction. Journal of Cleaner Production, 2020, 244, 118858.	4.6	51
134	China׳s regional assessment of renewable energy vulnerability to climate change. Renewable and Sustainable Energy Reviews, 2014, 40, 185-195.	8.2	50
135	Economic dispatch savings in the coal-fired power sector: An empirical study of China. Energy Economics, 2018, 74, 330-342.	5.6	50
136	A scenario analysis of energy requirements and energy intensity for China's rapidly developing society in the year 2020. Technological Forecasting and Social Change, 2006, 73, 405-421.	6.2	49
137	Driving factors for social vulnerability to coastal hazards in Southeast Asia: results from the meta-analysis. Natural Hazards, 2010, 54, 901-929.	1.6	48
138	Regional efforts to mitigate climate change in China: a multi-criteria assessment approach. Mitigation and Adaptation Strategies for Global Change, 2017, 22, 45-66.	1.0	48
139	Would China's power industry benefit from nationwide carbon emission permit trading? An optimization model-based ex post analysis on abatement cost savings. Applied Energy, 2019, 235, 978-986.	5.1	47
140	When does the turning point in China's CO ₂ emissions occur? Results based on the Green Solow model. Environment and Development Economics, 2015, 20, 723-745.	1.3	46
141	China's regional vulnerability to drought and its mitigation strategies under climate change: data envelopment analysis and analytic hierarchy process integrated approach. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 341-359.	1.0	46
142	Can China realise its energy-savings goal by adjusting its industrial structure?. Economic Systems Research, 2016, 28, 273-293.	1.2	46
143	Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces. Applied Energy, 2018, 229, 236-252.	5.1	46
144	A model based on stochastic dynamic programming for determining China's optimal strategic petroleum reserve policy. Energy Policy, 2009, 37, 4397-4406.	4.2	45

#	Article	IF	CITATIONS
145	Beijing storm of July 21, 2012: observations and reflections. Natural Hazards, 2013, 67, 969-974.	1.6	45
146	Energy productivity and Chinese local officials' promotions: Evidence from provincial governors. Energy Policy, 2016, 95, 103-112.	4.2	45
147	Life cycle cost assessment of biomass co-firing power plants with CO2 capture and storage considering multiple incentives. Energy Economics, 2021, 96, 105173.	5.6	45
148	Is it possible for China to reduce its total CO 2 emissions?. Energy, 2015, 83, 438-446.	4.5	44
149	Environmental and economic impacts of trade barriers: The example of China–US trade friction. Resources and Energy Economics, 2020, 59, 101144.	1.1	44
150	Dynamic multiscale interactions between European carbon and electricity markets during 2005–2016. Energy Policy, 2017, 107, 309-322.	4.2	43
151	Observing technology reserves of carbon capture and storage via patent data: Paving the way for carbon neutral. Technological Forecasting and Social Change, 2021, 171, 120933.	6.2	43
152	The dynamic influence of advanced stock market risk on international crude oil returns: an empirical analysis. Quantitative Finance, 2011, 11, 967-978.	0.9	42
153	The fluctuations of China's energy intensity: Biased technical change. Applied Energy, 2014, 135, 407-414.	5.1	41
154	Exploring the climatic impacts on residential electricity consumption in Jiangsu, China. Energy Policy, 2020, 140, 111398.	4.2	41
155	Sources of carbon productivity change: A decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function. Ecological Indicators, 2016, 66, 545-555.	2.6	40
156	Risk management of extreme events under climate change. Journal of Cleaner Production, 2017, 166, 1169-1174.	4.6	40
157	On the road to China's 2020 carbon intensity target from the perspective of "double control― Energy Policy, 2018, 119, 377-387.	4.2	40
158	Multi-model comparison of the economic and energy implications for China and India in an international climate regime. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 1335-1359.	1.0	39
159	Social cost of carbon under shared socioeconomic pathways. Global Environmental Change, 2018, 53, 225-232.	3.6	39
160	Possible design with equity and responsibility in China's renewable portfolio standards. Applied Energy, 2018, 232, 685-694.	5.1	39
161	China's energy consumption: A perspective from Divisia aggregation approach. Energy, 2010, 35, 28-34.	4.5	38
162	Economics of climate change and risk of disasters in Asia–Pacific region. Natural Hazards, 2016, 84, 1-5.	1.6	38

#	Article	IF	CITATIONS
163	Operational and environmental performance in China's thermal power industry: Taking an effectiveness measure as complement to an efficiency measure. Journal of Environmental Management, 2017, 192, 254-270.	3.8	38
164	Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function. Transport Policy, 2017, 60, 131-142.	3.4	38
165	The cellular automaton model of investment behavior in the stock market. Physica A: Statistical Mechanics and Its Applications, 2003, 325, 507-516.	1.2	37
166	An empirical analysis of the dynamic programming model of stockpile acquisition strategies for China's strategic petroleum reserve. Energy Policy, 2008, 36, 1470-1478.	4.2	36
167	Platform for China Energy & Environmental Policy Analysis: A general design and its application. Environmental Modelling and Software, 2014, 51, 195-206.	1.9	36
168	Virtual enterprise and its intelligence management. Computers and Industrial Engineering, 2002, 42, 199-205.	3.4	35
169	Urban Household Water Demand in Beijing by 2020: An Agent-Based Model. Water Resources Management, 2014, 28, 2967-2980.	1.9	35
170	Emissions trading and abatement cost savings: An estimation of China's thermal power industry. Renewable and Sustainable Energy Reviews, 2016, 65, 1005-1017.	8.2	35
171	What drives intersectoral CO2 emissions in China?. Journal of Cleaner Production, 2016, 133, 1053-1061.	4.6	35
172	Identifying the determinants of energy intensity in China: A Bayesian averaging approach. Applied Energy, 2016, 168, 672-682.	5.1	35
173	Sustainable development pathway for intercity passenger transport: A case study of China. Applied Energy, 2019, 254, 113632.	5.1	35
174	Artificial neural network based predictive method for flood disaster. Computers and Industrial Engineering, 2002, 42, 383-390.	3.4	34
175	China's distributed energy policies: Evolution, instruments and recommendation. Energy Policy, 2019, 125, 55-64.	4.2	34
176	Risk evaluation of China's natural disaster systems: an approach based on triangular fuzzy numbers and stochastic simulation. Natural Hazards, 2012, 62, 129-139.	1.6	32
177	Will export rebate policy be effective for CO2 emissions reduction in China? A CEEPA-based analysis. Journal of Cleaner Production, 2015, 103, 120-129.	4.6	32
178	Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEAâ€Based Materials Balance Approach. Journal of Industrial Ecology, 2019, 23, 389-401.	2.8	32
179	The effect of investor psychology on the complexity of stock market: An analysis based on cellular automaton model. Computers and Industrial Engineering, 2009, 56, 63-69.	3.4	30
180	Is the CO2 emissions reduction from scale change, structural change or technology change? Evidence from non-metallic sector of 11 major economies in 1995–2009. Journal of Cleaner Production, 2017, 148, 148-157.	4.6	30

#	Article	IF	CITATIONS
181	Assessment of equity principles for international climate policy based on an integrated assessment model. Natural Hazards, 2019, 95, 309-323.	1.6	30
182	The grid parity analysis of onshore wind power in China: A system cost perspective. Renewable Energy, 2020, 148, 22-30.	4.3	30
183	Local government competition on setting emission reduction goals. Science of the Total Environment, 2020, 745, 141002.	3.9	30
184	Opportunity and marginal abatement cost savings from China's pilot carbon emissions permit trading system: Simulating evidence from the industrial sectors. Journal of Environmental Management, 2020, 271, 110975.	3.8	30
185	China's carbon flow: 2008–2012. Energy Policy, 2015, 80, 45-53.	4.2	29
186	A Hybrid Method for Short-Term Wind Speed Forecasting. Sustainability, 2017, 9, 596.	1.6	29
187	Forewarning of sustainable utilization of regional water resources: a model based on BP neural network and set pair analysis. Natural Hazards, 2012, 62, 115-127.	1.6	28
188	Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems. Energy Policy, 2017, 104, 274-284.	4.2	28
189	Modelling the dynamics of European carbon futures price: A Zipf analysis. Economic Modelling, 2014, 38, 372-380.	1.8	27
190	Review of carbon leakage under regionally differentiated climate policies. Science of the Total Environment, 2021, 782, 146765.	3.9	27
191	Impact assessment using DEA of coastal hazards on social-economy in Southeast Asia. Natural Hazards, 2009, 48, 167-189.	1.6	26
192	Keeping track of â€~corporate social responsibility' as a business and management discipline: case of Pakistan. Journal of Cleaner Production, 2014, 74, 27-34.	4.6	26
193	A dynamic forward-citation full path model for technology monitoring: An empirical study from shale gas industry. Applied Energy, 2017, 205, 769-780.	5.1	26
194	Risk analysis for drought hazard in China: a case study in Huaibei Plain. Natural Hazards, 2013, 67, 879-900.	1.6	25
195	Examining the structural changes of European carbon futures price 2005–2012. Applied Economics Letters, 2015, 22, 335-342.	1.0	25
196	Risk assessment of oil price from static and dynamic modelling approaches. Applied Economics, 2017, 49, 929-939.	1.2	25
197	Cost-environment efficiency analysis of construction industry in China: A materials balance approach. Journal of Cleaner Production, 2019, 221, 457-468.	4.6	25
198	The effect of an SPR on the oil price in China: A system dynamics approach. Applied Energy, 2014, 133, 363-373.	5.1	24

#	Article	IF	CITATIONS
199	Impact of climatic factors on monthly electricity consumption of China's sectors. Natural Hazards, 2015, 75, 2027-2037.	1.6	24
200	The health benefits and economic effects of cooperative PM2.5 control: A cost-effectiveness game model. Journal of Cleaner Production, 2019, 228, 1572-1585.	4.6	24
201	China's regional drought risk under climate change: a two-stage process assessment approach. Natural Hazards, 2015, 76, 667-684.	1.6	23
202	Recent trend of industrial emissions in developing countries. Applied Energy, 2016, 166, 187-190.	5.1	23
203	Energy economics and climate policy modeling. Annals of Operations Research, 2017, 255, 1-7.	2.6	23
204	Shadow prices of direct and overall carbon emissions in China's construction industry: A parametric directional distance function-based sensitive estimation. Structural Change and Economic Dynamics, 2018, 47, 180-193.	2.1	23
205	Possible Emission Reductions From Ride-Sourcing Travel in a Global Megacity: The Case of Beijing. Journal of Environment and Development, 2018, 27, 156-185.	1.6	23
206	A real option model for geothermal heating investment decision making: Considering carbon trading and resource taxes. Energy, 2019, 189, 116252.	4.5	22
207	The Prospects of Carbon Capture and Storage in China's Power Sector under the 2 °C Target: A Component-based Learning Curve Approach. International Journal of Greenhouse Gas Control, 2020, 101, 103149.	2.3	22
208	How do the appliance energy standards work in China? Evidence from room air conditioners. Energy and Buildings, 2015, 86, 833-840.	3.1	21
209	Spatial and temporal uncertainty in the technological pathway towards a low-carbon power industry: A case study of China. Journal of Cleaner Production, 2019, 230, 720-733.	4.6	21
210	Synergistic effects of environmental regulations on carbon productivity growth in China's major industrial sectors. Natural Hazards, 2019, 95, 55-72.	1.6	21
211	Time use and carbon dioxide emissions accounting: An empirical analysis from China. Journal of Cleaner Production, 2019, 215, 582-599.	4.6	21
212	A cost–benefit analysis of the environmental taxation policy in China: A frontier analysisâ€based environmentally extended input–output optimization method. Journal of Industrial Ecology, 2020, 24, 564-576.	2.8	21
213	The evolution of CO2 emissions in international trade for major economies: a perspective from the global supply chain. Mitigation and Adaptation Strategies for Global Change, 2017, 22, 1229-1248.	1.0	20
214	How does coal-electricity price linkage impact on the profit of enterprises in China? Evidence from a Stackelberg game model. Resources, Conservation and Recycling, 2018, 129, 383-391.	5.3	20
215	A novel dataset of emission abatement sector extended input-output table for environmental policy analysis. Applied Energy, 2018, 231, 1259-1267.	5.1	20
216	Regional flood risk assessment via coupled fuzzy c-means clustering methods: an empirical analysis from China's Huaihe River Basin. Natural Hazards, 2018, 93, 803-822.	1.6	20

#	Article	IF	CITATIONS
217	Evolution of urban household indirect carbon emission responsibility from an inter-sectoral perspective: A case study of Guangdong, China. Energy Economics, 2019, 83, 197-207.	5.6	20
218	A system dynamics based model for coal investment. Energy, 2007, 32, 898-905.	4.5	19
219	Assessing the Distributional Impacts of Carbon Tax among Households across Different Income Groups: The Case of China. Energy and Environment, 2013, 24, 1323-1346.	2.7	19
220	Spatiotemporal variation of meteorological droughts based on the daily comprehensive drought index in the Haihe River basin, China. Natural Hazards, 2015, 75, 199-217.	1.6	19
221	Examining the links among economic growth, energy consumption, and CO2 emission with linear and nonlinear causality tests. Natural Hazards, 2016, 81, 1147-1159.	1.6	19
222	Inequality across China's Staple Crops in Energy Consumption and Related GHG Emissions. Ecological Economics, 2018, 153, 17-30.	2.9	19
223	Forecasting flood disasters using an accelerated genetic algorithm: Examples of two case studies for China. Natural Hazards, 2008, 44, 85-92.	1.6	17
224	Review of proposals for an Agreement on Future Climate Policy: Perspectives from the responsibilities for GHG reduction. Energy Strategy Reviews, 2013, 2, 161-168.	3.3	17
225	Measuring energy economic efficiency: A mathematical programming approach. Applied Energy, 2016, 179, 479-487.	5.1	17
226	Frontiers of low-carbon technologies: Results from bibliographic coupling with sliding window. Journal of Cleaner Production, 2018, 190, 422-431.	4.6	16
227	The carbon footprint and cost of coal-based hydrogen production with and without carbon capture and storage technology in China. Journal of Cleaner Production, 2022, 362, 132514.	4.6	16
228	Application of VaR methodology to risk management in the stock market in China. Computers and Industrial Engineering, 2004, 46, 383-388.	3.4	15
229	Impact analysis of China's coal-electricity price linkage mechanism: Results from a game model. Journal of Policy Modeling, 2010, 32, 574-588.	1.7	15
230	Energy conservation in China: Key provincial sectors at two-digit level. Applied Energy, 2013, 104, 457-465.	5.1	15
231	Integrated risk assessment method of waterlog disaster in Huaihe River Basin of China. Natural Hazards, 2015, 75, 155-178.	1.6	15
232	Optimization of virtual water flow via grain trade within China. Ecological Indicators, 2019, 97, 25-34.	2.6	15
233	Why did the historical energy forecasting succeed or fail? A case study on IEA's projection. Technological Forecasting and Social Change, 2016, 107, 90-96.	6.2	14
234	Operational performance management of the power industry: a distinguishing analysis between effectiveness and efficiency. Annals of Operations Research, 2018, 268, 513-537.	2.6	14

#	Article	IF	CITATIONS
235	Climate engineering management: an emerging interdisciplinary subject. Journal of Modelling in Management, 2019, 15, 685-702.	1.1	14
236	Quantities versus prices for best social welfare in carbon reduction: A literature review. Applied Energy, 2019, 233-234, 554-564.	5.1	14
237	Research trends in carbon capture and storage: A comparison of China with Canada. International Journal of Greenhouse Gas Control, 2020, 97, 103018.	2.3	13
238	China's socioeconomic risk from extreme events in a changing climate: a hierarchical Bayesian model. Climatic Change, 2016, 139, 169-181.	1.7	12
239	Investment in carbon dioxide capture and storage combined with enhanced water recovery. International Journal of Greenhouse Gas Control, 2020, 94, 102848.	2.3	12
240	Five tips for China to realize its co-targets of climate mitigation and Sustainable Development Goals (SDGs). Geography and Sustainability, 2020, 1, 245-249.	1.9	12
241	Reforming the Operation Mechanism of Chinese Electricity System: Benefits, Challenges and Possible Solutions. Energy Journal, 2020, 41, 219-246.	0.9	12
242	Comprehensive evaluation of ice disaster risk of the Ningxia–Inner Mongolia Reach in the upper Yellow River. Natural Hazards, 2015, 75, 179-197.	1.6	11
243	The impacts of migrant workers consumption on energy use and CO2 emissions in China. Natural Hazards, 2016, 81, 725-743.	1.6	11
244	How China's current energy pricing mechanisms will impact its marginal carbon abatement costs?. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 799-821.	1.0	11
245	An intertemporal carbon emissions trading system with cap adjustment and path control. Energy Policy, 2018, 122, 152-161.	4.2	11
246	Combining economic recovery with climate change mitigation: A global evaluation of financial instruments. Economic Analysis and Policy, 2021, 72, 438-453.	3.2	11
247	Hierarchy evaluation of water resources vulnerability under climate change in Beijing, China. Natural Hazards, 2016, 84, 63-76.	1.6	10
248	The marginal abatement cost curve and optimized abatement trajectory of CO2 emissions from China's petroleum industry. Regional Environmental Change, 2020, 20, 1.	1.4	10
249	A social learning approach to carbon capture and storage demonstration project management: An empirical analysis. Applied Energy, 2021, 299, 117336.	5.1	10
250	National vulnerability to extreme climatic events: the cases of electricity disruption in China and Japan. Natural Hazards, 2014, 71, 1937-1956.	1.6	9
251	Impacts of socioeconomic factors on monthly electricity consumption of China's sectors. Natural Hazards, 2015, 75, 2039-2047.	1.6	9
252	Enriching the VaR framework to EEMD with an application to the European carbon market. International Journal of Finance and Economics, 2018, 23, 315-328.	1.9	9

#	Article	IF	CITATIONS
253	Exploring the drivers of energy consumption-related CO2 emissions in China: a multiscale analysis. Energy Efficiency, 2019, 12, 1027-1039.	1.3	9
254	Exploring the differences in the airport competitiveness formation mechanism: evidence from 45 Chinese airports during 2010–2014. Transportmetrica B, 2017, 5, 325-341.	1.4	8
255	Tax and subsidy policy for domestic air pollution with asymmetric local and global spillover effects. Journal of Cleaner Production, 2021, 318, 128504.	4.6	8
256	Multiple objective-integrated methodology of global optimum decision-making on mineral resources exploitation. Computers and Industrial Engineering, 2004, 46, 363-372.	3.4	7
257	Multi-directional efficiency analysis-based regional industrial environmental performance evaluation of China. Natural Hazards, 2015, 75, 273-299.	1.6	7
258	CO2 emissions accounting for the chemical industry: an empirical analysis for China. Natural Hazards, 2019, 99, 1327-1343.	1.6	7
259	IMPACTS OF MECHANISMS TO PROMOTE PARTICIPATION IN CLIMATE MITIGATION: BORDER CARBON ADJUSTMENTS VERSUS UNIFORM TARIFF MEASURES. Climate Change Economics, 2020, 11, 2041007.	2.9	7
260	An integrated methodology for decision making of mining method selection. International Journal of Manufacturing Technology and Management, 2003, 5, 10.	0.1	6
261	Will the aggregation approach affect energy efficiency performance assessment?. Renewable and Sustainable Energy Reviews, 2012, 16, 4537-4542.	8.2	6
262	Vulnerability of infrastructure to natural hazards and climate change in China. Natural Hazards, 2015, 75, 107-110.	1.6	6
263	Modeling the coal-to-gas switch potentials in the power sector: A case study of China. Energy, 2020, 192, 116629.	4.5	6
264	Are electric vehicles cost competitive? A case study for China based on a lifecycle assessment. Environmental Science and Pollution Research, 2021, , 1.	2.7	6
265	The Nonlinear Impacts of Global Warming on Regional Economic Production: An Empirical Analysis from China. Weather, Climate, and Society, 2020, 12, 759-769.	0.5	6
266	The assessment of health impact caused by energy use in urban areas of China: an intake fraction–based analysis. Natural Hazards, 2012, 62, 101-114.	1.6	5
267	Energy strategy research – Charter and perspectives of an emerging discipline. Energy Strategy Reviews, 2013, 1, 135-137.	3.3	5
268	Flexible options to provide energy for capturing carbon dioxide in coal-fired power plants under the Clean Development Mechanism. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 1483-1505.	1.0	5
269	THE ECONOMIC IMPACTS OF GLOBAL WARMING ON CHINESE CITIES. Climate Change Economics, 2020, 11, 2050007.	2.9	5
270	Pathway comparison of limiting global warming to 2°C. Energy and Climate Change, 2021, 2, 100063.	2.2	4

#	Article	IF	CITATIONS
271	Sharing mitigation burden among sectors in China: Results from CEEPA. Energy Sources, Part B: Economics, Planning and Policy, 2018, 13, 141-148.	1.8	3
272	China's fiscal decentralization and environmental quality: theory and an empirical study – Erratum. Environment and Development Economics, 2020, 25, 204-204.	1.3	3
273	A decision-making approach considering technology progress for investment in oil sands projects: An empirical analysis in Canada. Journal of Petroleum Science and Engineering, 2020, 195, 107741.	2.1	2
274	Mathematical model for the optimization of the allocation of nonferrous raw materials in China. Computers and Industrial Engineering, 2004, 46, 293-303.	3.4	1
275	Set pair analysis and BP neural network coupling model for optimal selection of flood control operation. , 2010, , .		1
276	Global Energy Development and Energy Poverty. , 2018, , 1-42.		1
277	Editorial for the special issue: integrated assessment model analysis of climate change in China. Natural Hazards, 2019, 99, 1195-1196.	1.6	1
278	Integrating cost information in energy efficiency measurement: An empirical study on thermal power companies. Energy Efficiency, 2020, 13, 697-709.	1.3	1
279	RESEARCH ON THE EVALUATION OF SUSTAINABLE DEVELOPMENT BASED ON ECONOMY DEVELOPMENT. Journal of the Chinese Institute of Industrial Engineers, 2004, 21, 92-100.	0.5	0
280	Introduction to the special issue of Energy Strategy Reviews on "East Asian Energy System Management Challenges― Energy Strategy Reviews, 2013, 2, 133-135.	3.3	0
281	Measurements and General Characteristics of Energy Poverty in China. , 2018, , 43-72.		0
282	Energy Poverty in China: A Comprehensive Assessment and Region-specific Comparison. , 2018, , 73-121.		0
283	Solid Fuels in Rural and Their Impacts on Resident Health. , 2018, , 145-174.		0
284	Energy Poverty Elimination Policies and Actions. , 2018, , 253-276.		0
285	Prospects and Challenges of Energy Poverty Mitigation. , 2018, , 277-294.		0
286	Climate or Mitigation Engineering Management. Engineering, 2021, , .	3.2	0