Susana Rovira-Llopis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6451736/publications.pdf

Version: 2024-02-01

49 papers 1,916 citations

257450 24 h-index 265206 42 g-index

52 all docs 52 docs citations

times ranked

52

3558 citing authors

#	Article	IF	CITATIONS
1	Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biology, 2017, 11, 637-645.	9.0	403
2	Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients. Free Radical Biology and Medicine, 2017, 108, 155-162.	2.9	84
3	The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. Redox Biology, 2016, 10, 200-205.	9.0	82
4	The SGLT2 Inhibitor Empagliflozin Ameliorates the Inflammatory Profile in Type 2 Diabetic Patients and Promotes an Antioxidant Response in Leukocytes. Journal of Clinical Medicine, 2019, 8, 1814.	2.4	82
5	Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase. PLoS ONE, 2016, 11, e0151960.	2.5	76
6	Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeutic TargetsReviewing Editors: <i>Markus Bachschmid, Dylan Burger, Vittorio Calabrese, Amadou Camara, Lukas Kubala, Giuseppe Poli, and Chandan K. Sen</i>	5.4	74
7	Mitochondrial Dysfunction and Antioxidant Therapy in Sepsis. Infectious Disorders - Drug Targets, 2012, 12, 161-178.	0.8	71
8	Human Leukocyte/Endothelial Cell Interactions and Mitochondrial Dysfunction in Type 2 Diabetic Patients and Their Association With Silent Myocardial Ischemia. Diabetes Care, 2013, 36, 1695-1702.	8.6	63
9	Metabolic syndrome enhances endoplasmic reticulum, oxidative stress and leukocyte–endothelium interactions in PCOS. Metabolism: Clinical and Experimental, 2017, 71, 153-162.	3.4	58
10	The mitochondrial antioxidant SS-31 increases SIRT1 levels and ameliorates inflammation, oxidative stress and leukocyte-endothelium interactions in type 2 diabetes. Scientific Reports, 2018, 8, 15862.	3.3	51
11	Is Myeloperoxidase a Key Component in the ROS-Induced Vascular Damage Related to Nephropathy in Type 2 Diabetes?. Antioxidants and Redox Signaling, 2013, 19, 1452-1458.	5.4	50
12	Downregulation of miR-31 in Diabetic Nephropathy and its Relationship with Inflammation. Cellular Physiology and Biochemistry, 2018, 50, 1005-1014.	1.6	45
13	Does Metformin Protect Diabetic Patients from Oxidative Stress and Leukocyte-Endothelium Interactions?. Antioxidants and Redox Signaling, 2017, 27, 1439-1445.	5.4	44
14	Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Diabetes. Current Pharmaceutical Design, 2016, 22, 2640-2649.	1.9	41
15	Plasma lipidomics discloses metabolic syndrome with a specific HDL phenotype. FASEB Journal, 2014, 28, 5163-5171.	0.5	40
16	Perspectives and Potential Applications of Mitochondriaâ€Targeted Antioxidants in Cardiometabolic Diseases and Type 2 Diabetes. Medicinal Research Reviews, 2014, 34, 160-189.	10.5	40
17	Effects of metformin on mitochondrial function of leukocytes from polycystic ovary syndrome patients with insulin resistance. European Journal of Endocrinology, 2015, 173, 683-691.	3.7	37
18	The Mitochondria-Targeted Antioxidant MitoQ Modulates Mitochondrial Function and Endoplasmic Reticulum Stress in Pancreatic \hat{I}^2 Cells Exposed to Hyperglycaemia. Cellular Physiology and Biochemistry, 2019, 52, 186-197.	1.6	35

#	Article	IF	CITATIONS
19	Moderate weight loss attenuates chronic endoplasmic reticulum stress and mitochondrial dysfunction in human obesity. Molecular Metabolism, 2019, 19, 24-33.	6.5	34
20	Oxidative and endoplasmic reticulum stress is impaired in leukocytes from metabolically unhealthy vs healthy obese individuals. International Journal of Obesity, 2017, 41, 1556-1563.	3.4	33
21	Association of Serum Retinol Binding Protein 4 with Atherogenic Dyslipidemia in Morbid Obese Patients. PLoS ONE, 2013, 8, e78670.	2.5	32
22	Metformin modulates human leukocyte/endothelial cell interactions and proinflammatory cytokines in polycystic ovary syndrome patients. Atherosclerosis, 2015, 242, 167-173.	0.8	30
23	Is Glycemic Control Modulating Endoplasmic Reticulum Stress in Leukocytes of Type 2 Diabetic Patients?. Antioxidants and Redox Signaling, 2014, 21, 1759-1765.	5.4	29
24	Are Mitochondrial Fusion and Fission Impaired in Leukocytes of Type 2 Diabetic Patients?. Antioxidants and Redox Signaling, 2016, 25, 108-115.	5.4	28
25	Altered Mitochondrial Function and Oxidative Stress in Leukocytes of Anorexia Nervosa Patients. PLoS ONE, 2014, 9, e106463.	2.5	26
26	Lipidomics reveals altered biosynthetic pathways of glycerophospholipids and cell signaling as biomarkers of the polycystic ovary syndrome. Oncotarget, 2018, 9, 4522-4536.	1.8	26
27	Metformin induces lipid changes on sphingolipid species and oxidized lipids in polycystic ovary syndrome women. Scientific Reports, 2019, 9, 16033.	3.3	25
28	Pinitol alleviates systemic inflammatory cytokines in human obesity by a mechanism involving unfolded protein response and sirtuin 1. Clinical Nutrition, 2018, 37, 2036-2044.	5.0	23
29	The Pivotal Role of Nitric Oxide: Effects on the Nervous and Immune Systems. Current Pharmaceutical Design, 2014, 20, 4679-4689.	1.9	22
30	Does Metformin Modulate Endoplasmic Reticulum Stress and Autophagy in Type 2 Diabetic Peripheral Blood Mononuclear Cells?. Antioxidants and Redox Signaling, 2018, 28, 1562-1569.	5.4	20
31	Mitochondrial Dysfunction and Oxidative Stress in Insulin Resistance. Current Pharmaceutical Design, 2013, 19, 5730-5741.	1.9	20
32	Mitochondrial Impairment and Oxidative Stress in Leukocytes after Testosterone Administration to Femaleâ€Toâ€Male Transsexuals. Journal of Sexual Medicine, 2014, 11, 454-461.	0.6	19
33	Effects of simvastatin, ezetimibe and simvastatin/ezetimibe on mitochondrial function and leukocyte/endothelial cell interactions in patients with hypercholesterolemia. Atherosclerosis, 2016, 247, 40-47.	0.8	19
34	Does Glycemic Control Modulate the Impairment of NLRP3 Inflammasome Activation in Type 2 Diabetes?. Antioxidants and Redox Signaling, 2019, 30, 232-240.	5.4	19
35	Exercise Training Promotes Sex-Specific Adaptations in Mouse Inguinal White Adipose Tissue. Diabetes, 2021, 70, 1250-1264.	0.6	19
36	Is Autophagy Altered in the Leukocytes of Type 2 Diabetic Patients?. Antioxidants and Redox Signaling, 2015, 23, 1050-1056.	5.4	18

#	Article	IF	CITATIONS
37	Chronic consumption of an inositol-enriched carob extract improves postprandial glycaemia and insulin sensitivity in healthy subjects: A randomized controlled trial. Clinical Nutrition, 2016, 35, 600-607.	5.0	18
38	Involvement of leucocyte/endothelial cell interactions in anorexia nervosa. European Journal of Clinical Investigation, 2015, 45, 670-678.	3.4	15
39	Effect of consumption of a carob pod inositol-enriched beverage on insulin sensitivity and inflammation in middle-aged prediabetic subjects. Food and Function, 2016, 7, 4379-4387.	4.6	14
40	Role of Oxidative Stress and Mitochondrial Dysfunction in Skeletal Muscle in Type 2 Diabetic Patients. Current Pharmaceutical Design, 2016, 22, 2650-2656.	1.9	10
41	Chronic consumption of an inositol-enriched beverage ameliorates endothelial dysfunction and oxidative stress in type 2 diabetes. Journal of Functional Foods, 2015, 18, 598-607.	3.4	8
42	Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress. RSC Advances, 2015, 5, 79423-79432.	3.6	7
43	The consumption of a bread enriched with dietary fibre and l-carnitine improves glucose homoeostasis and insulin sensitivity in patients with metabolic syndrome. Journal of Cereal Science, 2015, 64, 159-167.	3.7	6
44	Characterization of Differentially Expressed Circulating miRNAs in Metabolically Healthy versus Unhealthy Obesity. Biomedicines, 2021, 9, 321.	3.2	6
45	Differential Effects of Biologics on Psoriasis-Related Vascular Inflammation and Risk of Thrombosis. Journal of Investigative Dermatology, 2020, 140, 2294-2298.e6.	0.7	4
46	Mitochondria-Targeted Antioxidants as a Therapeutic Strategy for Protecting Endothelium in Cardiovascular Diseases. Current Medicinal Chemistry, 2014, 21, 2989-3006.	2.4	4
47	Atherosclerosis, Mitochondrial Dysfunction and Oxidative Stress: Mitochondria-Targeted Antioxidants as Potential Therapy. , 2016, , 96-135.		3
48	The role of reactive oxygen species in obesity therapeutics. Expert Review of Endocrinology and Metabolism, 2014, 9, 629-639.	2.4	2
49	MicroRNAs in Diabetes and Its Vascular Complications. Cardiac and Vascular Biology, 2017, , 39-59.	0.2	О