Na Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6451735/publications.pdf

Version: 2024-02-01

840776 794594 19 524 11 19 citations h-index g-index papers 20 20 20 702 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. Journal of the American Chemical Society, 2020, 142, 18005-18013.	13.7	118
2	pH Responsiveness of Hexosomes and Cubosomes for Combined Delivery of <i>Brucea javanica</i> Oil and Doxorubicin. Langmuir, 2019, 35, 14532-14542.	3.5	79
3	Self-assembly of mitochondria-specific peptide amphiphiles amplifying lung cancer cell death through targeting the VDAC1–hexokinase-II complex. Journal of Materials Chemistry B, 2019, 7, 4706-4716.	5. 8	63
4	Protein encapsulation: a new approach for improving the capability of small-molecule fluorogenic probes. Chemical Science, 2020, 11, 1107-1113.	7.4	49
5	Construction and Characterization of a Novel Sustained-Release Delivery System for Hydrophobic Pesticides Using Biodegradable Polydopamine-Based Microcapsules. Journal of Agricultural and Food Chemistry, 2018, 66, 6262-6268.	5. 2	39
6	The new NCPSS BL19U2 beamline at the SSRF for small-angle X-ray scattering from biological macromolecules in solution. Journal of Applied Crystallography, 2016, 49, 1428-1432.	4.5	39
7	Mitochondrial Voltage-Dependent Anion Channel 1–Hexokinase-II Complex-Targeted Strategy for Melanoma Inhibition Using Designed Multiblock Peptide Amphiphiles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35281-35293.	8.0	28
8	Measuring the Microphase Separation Scale of Polyurethanes with a Vibration-Induced Emission-Based Ratiometric "Fluorescent Ruler― ACS Applied Materials & Samp; Interfaces, 2019, 11, 39351-39358.	8.0	27
9	Upgraded SSRF BL19U2 beamline for small-angle X-ray scattering of biological macromolecules in solution. Journal of Applied Crystallography, 2018, 51, 1633-1640.	4.5	20
10	A theoretical and experimental investigation of the effect of sodium dodecyl sulfate on the structural and conformational properties of bovine \hat{l}^2 -casein. Soft Matter, 2019, 15, 1551-1561.	2.7	11
11	A Lipidated Peptide with Mitochondrial Membrane Localization in Human A549 Lung Cells: From Enhanced Cell-Penetrating Properties to Biological Activity Mechanism. ACS Applied Bio Materials, 2021, 4, 8277-8290.	4.6	11
12	Structural Study of Polystyrene- <i>b</i> -poly(acrylic acid) Micelles Complexed with Uranyl: A SAXS Core–Shell Model Analysis. Langmuir, 2020, 36, 4820-4826.	3.5	9
13	Unveiling the structure of the primary caseinate particle using small-angle X-ray scattering and simulation methodologies. Food Research International, 2021, 149, 110653.	6.2	9
14	Quantitative analysis of the structural relaxation of silica-PEO shake gel by X-ray and light scattering. Polymer Testing, 2021, 104, 107391.	4.8	3
15	Precise Self-assembly of Janus Pyramid Heteroclusters into Core-Corona Nanodots and Nanodot Supracrystals: Implications for the Construction of Virus-like Particles and Nanomaterials. ACS Applied Nano Materials, 2022, 5, 5558-5568.	5.0	3
16	Solution Small-Angle Scattering in Soft Matter: Application and Prospective < sup > ※ < /sup > . Acta Chimica Sinica, 2022, 80, 690.	1.4	3
17	Effect of λ-Cyhalothrin-Loaded Polydopamine Microcapsule Suspensions on Stress Defenses in the Chinese Mitten Crab, Eriocheir sinensis. ACS Agricultural Science and Technology, 2021, 1, 303-311.	2.3	1
18	Effect of Shiga Toxin on Inhomogeneous Biological Membrane Structure Determined by Small-Angle Scattering. Applied Sciences (Switzerland), 2021, 11, 6965.	2.5	1

#	Article	IF	CITATIONS
19	Structure and transport of polystyrene- <i>b</i> >-poly(acrylic acid) micelles incorporating uranyl carbonate: a model for NOM–U(<scp>vi</scp>) colloids. Environmental Science: Nano, 0, , .	4.3	1