Andrea Ablasser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6451423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The cGAS–STING pathway drives type I IFN immunopathology in COVID-19. Nature, 2022, 603, 145-151.	27.8	272
2	Emerging dimensions of cellular cGAS-STING signaling. Current Opinion in Immunology, 2022, 74, 164-171.	5.5	15
3	DNA sensor in standby mode during mitosis. Science, 2021, 371, 1204-1205.	12.6	2
4	m6A methylation potentiates cytosolic dsDNA recognition in a sequence-specific manner. Open Biology, 2021, 11, 210030.	3.6	3
5	The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 2021, 21, 548-569.	22.7	714
6	The spatial organization of cGAS-TREX1 interactions. Developmental Cell, 2021, 56, 876-877.	7.0	0
7	DNA hypomethylation leads to cGASâ€induced autoinflammation in the epidermis. EMBO Journal, 2021, 40, e108234.	7.8	17
8	A billion-year-old mechanism of innate immunity uncovered. Nature Reviews Immunology, 2021, 21, 620-620.	22.7	5
9	Interplay of cGAS with chromatin. Trends in Biochemical Sciences, 2021, 46, 822-831.	7.5	17
10	Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nature Immunology, 2020, 21, 17-29.	14.5	219
11	BAF restricts cGAS on nuclear DNA to prevent innate immune activation. Science, 2020, 369, 823-828.	12.6	125
12	COPA silences STING. Journal of Experimental Medicine, 2020, 217, .	8.5	14
13	Structural mechanism of cGAS inhibition by theÂnucleosome. Nature, 2020, 587, 668-672.	27.8	157
14	Editorial overview â€~Network news: Reporting from the frontlines of cell signaling'. Current Opinion in Cell Biology, 2020, 63, iii-v.	5.4	0
15	A carrier for cyclic dinucleotides. Nature Immunology, 2019, 20, 1418-1420.	14.5	1
16	Structures of STING protein illuminate this key regulator of inflammation. Nature, 2019, 567, 321-322.	27.8	8
17	Virology: Poxins Soothe the STING. Current Biology, 2019, 29, R332-R334.	3.9	1
18	cGAS in action: Expanding roles in immunity and inflammation. Science, 2019, 363, .	12.6	602

ANDREA ABLASSER

#	Article	IF	CITATIONS
19	Intracellular bacteria engage a STING–TBK1–MVB12b pathway to enable paracrine cGAS–STING signalling. Nature Microbiology, 2019, 4, 701-713.	13.3	100
20	Latest advances in aging research and drug discovery. Aging, 2019, 11, 9971-9981.	3.1	13
21	Innate immunosensing of DNA in cellular senescence. Current Opinion in Immunology, 2019, 56, 31-36.	5.5	49
22	Targeting STING with covalent small-molecule inhibitors. Nature, 2018, 559, 269-273.	27.8	601
23	Phase separation focuses DNA sensing. Science, 2018, 361, 646-647.	12.6	7
24	Human cGAS Has a Slightly Different Taste for dsDNA. Immunity, 2018, 49, 206-208.	14.3	1
25	Signalling strength determines proapoptotic functions of STINC. Nature Communications, 2017, 8, 427.	12.8	321
26	Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nature Cell Biology, 2017, 19, 1061-1070.	10.3	741
27	The role of cGAS in innate immunity and beyond. Journal of Molecular Medicine, 2016, 94, 1085-1093.	3.9	46
28	Inflammasome Activation and Function During Infection with Mycobacterium Tuberculosis. Current Topics in Microbiology and Immunology, 2016, 397, 183-197.	1.1	8
29	ReGLUation of cGAS. Nature Immunology, 2016, 17, 347-349.	14.5	5
30	Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1. Cell Host and Microbe, 2015, 17, 799-810.	11.0	341
31	Inside Job: Viruses Transfer cGAMP between Cells. Cell Host and Microbe, 2015, 18, 263-265.	11.0	2
32	Selfâ€priming determines high type I <scp>IFN</scp> production by plasmacytoid dendritic cells. European Journal of Immunology, 2014, 44, 807-818.	2.9	63
33	TREX1 Deficiency Triggers Cell-Autonomous Immunity in a cGAS-Dependent Manner. Journal of Immunology, 2014, 192, 5993-5997.	0.8	210
34	OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nature Reviews Immunology, 2014, 14, 521-528.	22.7	246
35	Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature, 2013, 503, 530-534.	27.8	483
36	Nucleic acid driven sterile inflammation. Clinical Immunology, 2013, 147, 207-215.	3.2	69

ANDREA ABLASSER

#	Article	IF	CITATIONS
37	Species-specific detection of the antiviral small-molecule compound CMA by STING. EMBO Journal, 2013, 32, 1440-1450.	7.8	162
38	Structural mechanism of cytosolic DNA sensing by cGAS. Nature, 2013, 498, 332-337.	27.8	608
39	cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature, 2013, 498, 380-384.	27.8	1,193
40	DNA sensing unchained. Cell Research, 2013, 23, 585-587.	12.0	15
41	Induction of type I IFNs by intracellular DNAâ€sensing pathways. Immunology and Cell Biology, 2012, 90, 474-482.	2.3	74
42	Where, in antiviral defense, does IFIT1 fit?. Nature Immunology, 2011, 12, 588-590.	14.5	15
43	Inflammasomes: current understanding and open questions. Cellular and Molecular Life Sciences, 2011, 68, 765-783.	5.4	316
44	<i>Listeria monocytogenes</i> is sensed by the NLRP3 and AIM2 inflammasome. European Journal of Immunology, 2010, 40, 1545-1551.	2.9	221
45	An unexpected role for RNA in the recognition of DNA by the innate immune system. RNA Biology, 2010, 7, 151-157.	3.1	11
46	AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 2009, 458, 514-518.	27.8	2,098
47	RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nature Immunology, 2009, 10, 1065-1072.	14.5	762
48	Selection of Molecular Structure and Delivery of RNA Oligonucleotides to Activate TLR7 versus TLR8 and to Induce High Amounts of IL-12p70 in Primary Human Monocytes. Journal of Immunology, 2009, 182, 6824-6833.	0.8	90
49	T Cell-Independent, TLR-Induced IL-12p70 Production in Primary Human Monocytes. Journal of Immunology, 2006, 176, 7438-7446.	0.8	102
50	Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Medicine, 2005, 11, 263-270.	30.7	1,153