Zhijian J Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6451386/publications.pdf

Version: 2024-02-01

178	59,926	102	173
papers	citations	h-index	g-index
190	190	190	44448
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science, 2013, 339, 786-791.	6.0	3,305
2	Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-ÎB and IRF3. Cell, 2005, 122, 669-682.	13.5	2,839
3	TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 2001, 412, 346-351.	13.7	1,850
4	Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science, 2013, 339, 826-830.	6.0	1,778
5	Activation of the lÎB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain. Cell, 2000, 103, 351-361.	13.5	1,707
6	STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity, 2014, 41, 843-852.	6.6	1,468
7	TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature, 2007, 446, 916-920.	13.7	1,405
8	Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nature Immunology, 2016, 17, 1142-1149.	7.0	1,379
9	Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 2015, 347, aaa2630.	6.0	1,280
10	Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway Genes and Development, 1995, 9, 1586-1597.	2.7	1,193
11	Ubiquitin signalling in the NF-κB pathway. Nature Cell Biology, 2005, 7, 758-765.	4.6	1,092
12	RNA Polymerase III Detects Cytosolic DNA and Induces Type I Interferons through the RIG-I Pathway. Cell, 2009, 138, 576-591.	13.5	1,026
13	MAVS Forms Functional Prion-like Aggregates to Activate and Propagate Antiviral Innate Immune Response. Cell, 2011, 146, 448-461.	13.5	1,018
14	Innate Immune Sensing and Signaling of Cytosolic Nucleic Acids. Annual Review of Immunology, 2014, 32, 461-488.	9.5	957
15	Site-Specific Phosphorylation of lκBα by a Novel Ubiquitination-Dependent Protein Kinase Activity. Cell, 1996, 84, 853-862.	13.5	945
16	STING Specifies IRF3 Phosphorylation by TBK1 in the Cytosolic DNA Signaling Pathway. Science Signaling, 2012, 5, ra20.	1.6	938
17	Activation of IKK by TNFα Requires Site-Specific Ubiquitination of RIP1 and Polyubiquitin Binding by NEMO. Molecular Cell, 2006, 22, 245-257.	4.5	911
18	Pivotal Roles of cGAS-cGAMP Signaling in Antiviral Defense and Immune Adjuvant Effects. Science, 2013, 341, 1390-1394.	6.0	883

#	Article	IF	CITATIONS
19	Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses. Science, 2013, 341, 903-906.	6.0	837
20	Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is An Endogenous High-Affinity Ligand for STING. Molecular Cell, 2013, 51, 226-235.	4.5	819
21	The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. Journal of Experimental Medicine, 2018, 215, 1287-1299.	4.2	786
22	Nonproteolytic Functions of Ubiquitin in Cell Signaling. Molecular Cell, 2009, 33, 275-286.	4.5	783
23	TAB2 and TAB3 Activate the NF- $\hat{\mathbb{P}}$ B Pathway through Binding to Polyubiquitin Chains. Molecular Cell, 2004, 15, 535-548.	4.5	775
24	The cGAS-cGAMP-STING Pathway of Cytosolic DNA Sensing and Signaling. Molecular Cell, 2014, 54, 289-296.	4.5	760
25	Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17717-17722.	3.3	744
26	Activation of the lîºBî± Kinase Complex by MEKK1, a Kinase of the JNK Pathway. Cell, 1997, 88, 213-222.	13.5	721
27	Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity. Cell, 2010, 141, 668-681.	13.5	717
28	Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature, 2019, 567, 262-266.	13.7	717
29	cGAS is essential for cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4612-E4620.	3.3	681
30	A STING-activating nanovaccine for cancer immunotherapy. Nature Nanotechnology, 2017, 12, 648-654.	15.6	649
31	The TRAF6 Ubiquitin Ligase and TAK1 Kinase Mediate IKK Activation by BCL10 and MALT1 in T Lymphocytes. Molecular Cell, 2004, 14, 289-301.	4.5	640
32	Apoptotic Caspases Prevent the Induction of Type I Interferons by Mitochondrial DNA. Cell, 2014, 159, 1563-1577.	13.5	625
33	DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science, 2018, 361, 704-709.	6.0	615
34	cGAS in action: Expanding roles in immunity and inflammation. Science, 2019, 363, .	6.0	602
35	The Specific and Essential Role of MAVS in Antiviral Innate Immune Responses. Immunity, 2006, 24, 633-642.	6.6	550
36	Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11259-11263.	3.3	543

#	Article	IF	CITATIONS
37	Structural basis of STING binding with and phosphorylation by TBK1. Nature, 2019, 567, 394-398.	13.7	540
38	Ubiquitylation in innate and adaptive immunity. Nature, 2009, 458, 430-437.	13.7	535
39	Reconstitution of the RIG-I Pathway Reveals a Signaling Role of Unanchored Polyubiquitin Chains in Innate Immunity. Cell, 2010, 141, 315-330.	13.5	521
40	NLRX1 is a regulator of mitochondrial antiviral immunity. Nature, 2008, 451, 573-577.	13.7	501
41	Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5699-705.	3.3	497
42	Prion-like Polymerization Underlies Signal Transduction in Antiviral Immune Defense and Inflammasome Activation. Cell, 2014, 156, 1207-1222.	13.5	489
43	Direct activation of protein kinases by unanchored polyubiquitin chains. Nature, 2009, 461, 114-119.	13.7	487
44	The Role of Ubiquitin in NF-κB Regulatory Pathways. Annual Review of Biochemistry, 2009, 78, 769-796.	5.0	447
45	Intrinsic antiviral immunity. Nature Immunology, 2012, 13, 214-222.	7.0	439
46	PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature, 2018, 564, 71-76.	13.7	423
47	T cell antigen receptor stimulation induces MALT1 paracaspase–mediated cleavage of the NF-κB inhibitor A20. Nature Immunology, 2008, 9, 263-271.	7.0	409
48	The novel functions of ubiquitination in signaling. Current Opinion in Cell Biology, 2004, 16, 119-126.	2.6	403
49	Antiviral innate immunity pathways. Cell Research, 2006, 16, 141-147.	5.7	401
50	Ubiquitin-mediated activation of TAK1 and IKK. Oncogene, 2007, 26, 3214-3226.	2.6	394
51	cGAS is essential for the antitumor effect of immune checkpoint blockade. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1637-1642.	3.3	394
52	Signal-induced ubiquitination of Ikappa Balpha by the F-box protein Slimb/beta -TrCP. Genes and Development, 1999, 13, 284-294.	2.7	394
53	Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature, 2019, 567, 389-393.	13.7	392
54	The essential role of MEKK3 in TNF-induced NF-κB activation. Nature Immunology, 2001, 2, 620-624.	7.0	381

#	Article	IF	CITATIONS
55	NLRC5 Negatively Regulates the NF-κB and Type I Interferon Signaling Pathways. Cell, 2010, 141, 483-496.	13.5	365
56	The Cytosolic DNA Sensor cGAS Forms an Oligomeric Complex with DNA and Undergoes Switch-like Conformational Changes in the Activation Loop. Cell Reports, 2014, 6, 421-430.	2.9	351
57	Ubiquitination in signaling to and activation of IKK. Immunological Reviews, 2012, 246, 95-106.	2.8	340
58	Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response. Immunity, 2012, 36, 959-973.	6.6	337
59	Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Annual Review of Microbiology, 2018, 72, 447-478.	2.9	336
60	Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis. Cell Host and Microbe, 2015, 17, 820-828.	5.1	327
61	Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity, 2020, 53, 43-53.	6.6	325
62	The role of ubiquitylation in immune defence and pathogen evasion. Nature Reviews Immunology, 2012, 12, 35-48.	10.6	286
63	Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature, 2014, 509, 110-114.	13.7	284
64	MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. ELife, 2013, 2, e00785.	2.8	282
65	Competing E3ÂUbiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm. Cell, 2013, 152, 1091-1105.	13.5	280
66	A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. Journal of Experimental Medicine, 2009, 206, 1899-1911.	4.2	267
67	STING Senses Microbial Viability to Orchestrate Stress-Mediated Autophagy of the Endoplasmic Reticulum. Cell, 2017, 171, 809-823.e13.	13.5	248
68	NLRX1 Negatively Regulates TLR-Induced NF-κB Signaling by Targeting TRAF6 and IKK. Immunity, 2011, 34, 843-853.	6.6	241
69	Cyclic di-GMP Sensing via the Innate Immune Signaling Protein STING. Molecular Cell, 2012, 46, 735-745.	4.5	241
70	An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature, 2017, 542, 197-202.	13.7	232
71	A Ubiquitin Replacement Strategy in Human Cells Reveals Distinct Mechanisms of IKK Activation by TNFÎ \pm and IL-1Î 2 . Molecular Cell, 2009, 36, 302-314.	4.5	224
72	Direct, Noncatalytic Mechanism of IKK Inhibition by A20. Molecular Cell, 2011, 44, 559-571.	4.5	222

#	Article	IF	CITATIONS
73	Regulation of NF-κB by ubiquitination. Current Opinion in Immunology, 2013, 25, 4-12.	2.4	222
74	Expanding role of ubiquitination in NF-κB signaling. Cell Research, 2011, 21, 6-21.	5.7	217
75	TBK1 recruitment to STING activates both IRF3 and NF- $\hat{\mathbb{I}}$ B that mediate immune defense against tumors and viral infections. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	213
76	Dendritic Cells but Not Macrophages Sense Tumor Mitochondrial DNA for Cross-priming through Signal Regulatory Protein \hat{l}_{\pm} Signaling. Immunity, 2017, 47, 363-373.e5.	6.6	209
77	Regulation of WASH-Dependent Actin Polymerization and Protein Trafficking by Ubiquitination. Cell, 2013, 152, 1051-1064.	13.5	201
78	Cigarette smoke selectively enhances viral PAMP– and virus-induced pulmonary innate immune and remodeling responses in mice. Journal of Clinical Investigation, 2008, 118, 2771-84.	3.9	194
79	ATM- and NEMO-Dependent ELKS Ubiquitination Coordinates TAK1-Mediated IKK Activation inÂResponse to Genotoxic Stress. Molecular Cell, 2010, 40, 75-86.	4.5	184
80	Emerging Role of ISG15 in Antiviral Immunity. Cell, 2010, 143, 187-190.	13.5	184
81	Act1, a U-box E3 Ubiquitin Ligase for IL-17 Signaling. Science Signaling, 2009, 2, ra63.	1.6	179
82	MAVS-Mediated Apoptosis and Its Inhibition by Viral Proteins. PLoS ONE, 2009, 4, e5466.	1.1	177
83	<scp>HSV</scp> â€1 <scp>ICP</scp> 27 targets the <scp>TBK</scp> 1â€activated STING signalsome to inhibit virusâ€induced type I <scp>IFN</scp> Âexpression. EMBO Journal, 2016, 35, 1385-1399.	3.5	173
84	STRUCTURE OF A DIUBIQUITIN CONJUGATE AND A MODEL FOR INTERACTION WITH UBIQUITIN CONJUGATING ENZYME (E2). , $1992, 267, 16467-71$.		163
85	E1-L2 Activates Both Ubiquitin and FAT10. Molecular Cell, 2007, 27, 1014-1023.	4.5	158
86	Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. Science Advances, 2021, 7, .	4.7	154
87	Key Role of Ubc5 and Lysine-63 Polyubiquitination in Viral Activation of IRF3. Molecular Cell, 2009, 36, 315-325.	4.5	149
88	Blood Vessel Tubulogenesis Requires Rasip1 Regulation of GTPase Signaling. Developmental Cell, 2011, 20, 526-539.	3.1	148
89	Modified Vaccinia Virus Ankara Triggers Type I IFN Production in Murine Conventional Dendritic Cells via a cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway. PLoS Pathogens, 2014, 10, e1003989.	2.1	148
90	Type I Interferon Production during Herpes Simplex Virus Infection Is Controlled by Cell-Type-Specific Viral Recognition through Toll-Like Receptor 9, the Mitochondrial Antiviral Signaling Protein Pathway, and Novel Recognition Systems. Journal of Virology, 2007, 81, 13315-13324.	1.5	145

#	Article	IF	CITATIONS
91	Structural basis for the prion-like MAVS filaments in antiviral innate immunity. ELife, 2014, 3, e01489.	2.8	145
92	Essential role of TAK1 in thymocyte development and activation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11677-11682.	3.3	140
93	Cytosolic DNA Sensing Promotes Macrophage Transformation and Governs Myocardial Ischemic Injury. Circulation, 2018, 137, 2613-2634.	1.6	136
94	MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14046-14051.	3.3	135
95	Nuclear Factor-κB Protects the Adult Cardiac Myocyte Against Ischemia-Induced Apoptosis in a Murine Model of Acute Myocardial Infarction. Circulation, 2003, 108, 3075-3078.	1.6	131
96	K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20ÂUbiquitin E3 Ligase Regulates Protein Trafficking. Molecular Cell, 2014, 54, 586-600.	4.5	129
97	Hijacking of Host Cell IKK Signalosomes by the Transforming Parasite Theileria. Science, 2002, 298, 1033-1036.	6.0	126
98	Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science, 2021, 371, .	6.0	123
99	TIFA activates IÂB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15318-15323.	3.3	117
100	The Role of Ubiquitination in Drosophila Innate Immunity. Journal of Biological Chemistry, 2005, 280, 34048-34055.	1.6	116
101	Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. ELife, 2012, 1, e00102.	2.8	116
102	MLH1 Deficiency-Triggered DNA Hyperexcision by Exonuclease 1 Activates the cGAS-STING Pathway. Cancer Cell, 2021, 39, 109-121.e5.	7.7	108
103	HSV Infection Induces Production of ROS, which Potentiate Signaling from Pattern Recognition Receptors: Role for S-glutathionylation of TRAF3 and 6. PLoS Pathogens, 2011, 7, e1002250.	2.1	107
104	Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible genelike receptors, which synergize to induce type I interferon production. Journal of General Virology, 2009, 90, 74-78.	1.3	106
105	MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science, 2014, 346, 1486-1492.	6.0	105
106	A catalytic-independent role for the LUBAC in NF- $\hat{l}^{\circ}B$ activation upon antigen receptor engagement and in lymphoma cells. Blood, 2014, 123, 2199-2203.	0.6	105
107	A20 Ubiquitin Ligase–Mediated Polyubiquitination of RIP1 Inhibits Caspase-8 Cleavage and TRAIL-Induced Apoptosis in Glioblastoma. Cancer Discovery, 2012, 2, 140-155.	7.7	104
108	Old dogs, new trick: classic cancer therapies activate cGAS. Cell Research, 2020, 30, 639-648.	5.7	104

#	Article	IF	CITATIONS
109	Sorting out Toll Signals. Cell, 2006, 125, 834-836.	13.5	88
110	Synthetic nanovaccines for immunotherapy. Journal of Controlled Release, 2017, 263, 200-210.	4.8	88
111	Neddylation E2 UBE2F Promotes the Survival of Lung Cancer Cells by Activating CRL5 to Degrade NOXA via the K11 Linkage. Clinical Cancer Research, 2017, 23, 1104-1116.	3.2	88
112	$\rm IKK\hat{I}^2$ is an IRF5 kinase that instigates inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17438-17443.	3.3	84
113	STEEP mediates STING ER exit and activation of signaling. Nature Immunology, 2020, 21, 868-879.	7.0	82
114	Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17390-17395.	3.3	80
115	cGAS suppresses genomic instability as a decelerator of replication forks. Science Advances, 2020, 6, .	4.7	79
116	A critical role of TAK1 in B-cell receptor–mediated nuclear factor κB activation. Blood, 2009, 113, 4566-4574.	0.6	75
117	Endocytic pathway is required for <i>Drosophila</i> Toll innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8322-8327.	3.3	74
118	Influenza virus differentially activates mTORC1 and mTORC2 signaling to maximize late stage replication. PLoS Pathogens, 2017, 13, e1006635.	2.1	74
119	Elucidation of the c-Jun N-Terminal Kinase Pathway Mediated by Epstein-Barr Virus-Encoded Latent Membrane Protein 1. Molecular and Cellular Biology, 2004, 24, 192-199.	1.1	70
120	A Novel Mitochondrial MAVS/Caspase-8 Platform Links RNA Virus–Induced Innate Antiviral Signaling to Bax/Bak-Independent Apoptosis. Journal of Immunology, 2014, 192, 1171-1183.	0.4	70
121	Roles of the cGAS-STING Pathway in Cancer Immunosurveillance and Immunotherapy. Annual Review of Cancer Biology, 2019, 3, 323-344.	2.3	69
122	Kinetic studies of isopeptidase T: modulation of peptidase activity by ubiquitin. Biochemistry, 1995, 34, 12616-12623.	1.2	65
123	SnapShot: Pathways of Antiviral Innate Immunity. Cell, 2010, 140, 436-436.e2.	13.5	65
124	Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8947-8952.	3.3	64
125	TRAF2: A Double-Edged Sword?. Science Signaling, 2005, 2005, pe7-pe7.	1.6	60
126	Vps9p CUE Domain Ubiquitin Binding Is Required for Efficient Endocytic Protein Traffic. Journal of Biological Chemistry, 2003, 278, 19826-19833.	1.6	59

#	Article	IF	CITATIONS
127	Diversity of Polyubiquitin Chains. Developmental Cell, 2009, 16, 485-486.	3.1	59
128	Activation of the Interferon- \hat{l}^2 Promoter During Hepatitis C Virus RNA Replication. Viral Immunology, 2002, 15, 29-40.	0.6	57
129	Ubiquitin in NF-κB Signaling. Chemical Reviews, 2009, 109, 1549-1560.	23.0	57
130	Murine Gamma-Herpesvirus 68 Hijacks MAVS and IKK \hat{l}^2 to Initiate Lytic Replication. PLoS Pathogens, 2010, 6, e1001001.	2.1	57
131	IKKε-Mediated Tumorigenesis Requires K63-Linked Polyubiquitination by a clAP1/clAP2/TRAF2 E3ÂUbiquitin Ligase Complex. Cell Reports, 2013, 3, 724-733.	2.9	56
132	Ubiquitination and TRAF signaling., 2007, 597, 80-92.		50
133	Vaccinia Virus Subverts a Mitochondrial Antiviral Signaling Protein-Dependent Innate Immune Response in Keratinocytes through Its Double-Stranded RNA Binding Protein, E3. Journal of Virology, 2008, 82, 10735-10746.	1.5	49
134	Discovery of Small-Molecule Cyclic GMP-AMP Synthase Inhibitors. Journal of Organic Chemistry, 2020, 85, 1579-1600.	1.7	48
135	Both K63 and K48 ubiquitin linkages signal lysosomal degradation of the LDL receptor. Journal of Lipid Research, 2013, 54, 1410-1420.	2.0	46
136	Liquid phase separation of NEMO induced by polyubiquitin chains activates NF-κB. Molecular Cell, 2022, 82, 2415-2426.e5.	4.5	45
137	Persistent Stimulation with Interleukin-17 Desensitizes Cells Through SCF ^{β-TrCP} -Mediated Degradation of Act1. Science Signaling, 2011, 4, ra73.	1.6	44
138	Human Metapneumovirus M2-2 Protein Inhibits Innate Cellular Signaling by Targeting MAVS. Journal of Virology, 2012, 86, 13049-13061.	1.5	44
139	Prion-Like Polymerization in Immunity and Inflammation. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023580.	2.3	44
140	Pellino 3b Negatively Regulates Interleukin-1-induced TAK1-dependent NFκB Activation. Journal of Biological Chemistry, 2008, 283, 14654-14664.	1.6	41
141	Innate Immune Activation by cGMP-AMP Nanoparticles Leads to Potent and Long-Acting Antiretroviral Response against HIV-1. Journal of Immunology, 2017, 199, 3840-3848.	0.4	39
142	Innate Immune Response to Streptococcus pyogenes Depends on the Combined Activation of TLR13 and TLR2. PLoS ONE, 2015, 10, e0119727.	1.1	37
143	K63-Ubiquitylation and TRAF6 Pathways Regulate Mammalian P-Body Formation and mRNA Decapping. Molecular Cell, 2016, 62, 943-957.	4.5	35
144	TLR sensing of bacterial spore-associated RNA triggers host immune responses with detrimental effects. Journal of Experimental Medicine, 2017, 214, 1297-1311.	4.2	33

#	Article	IF	CITATIONS
145	CC2D1A, a DM14 and C2 Domain Protein, Activates NF-κB through the Canonical Pathway. Journal of Biological Chemistry, 2010, 285, 24372-24380.	1.6	32
146	Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, controls functional maturation of central synapses. Journal of Neurophysiology, 2011, 105, 1506-1515.	0.9	31
147	Prion-like polymerization as a signaling mechanism. Trends in Immunology, 2014, 35, 622-630.	2.9	31
148	Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death and Differentiation, 2018, 25, 1885-1904.	5.0	31
149	cGAS restricts colon cancer development by protecting intestinal barrier integrity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
150	CELL BIOLOGY: Kinasing and Clipping Down the NF-Â B Trail. Science, 2005, 308, 65-66.	6.0	30
151	Type I Interferon Response in Radiation-Induced Anti-Tumor Immunity. Seminars in Radiation Oncology, 2020, 30, 129-138.	1.0	27
152	Differential Roles for RIG-l–like Receptors and Nucleic Acid-Sensing TLR Pathways in Controlling a Chronic Viral Infection. Journal of Immunology, 2012, 188, 4432-4440.	0.4	26
153	Linking Retroelements to Autoimmunity. Cell, 2008, 134, 569-571.	13.5	25
154	Structural insights into the activation of RIGâ€I, a nanosensor for viral RNAs. EMBO Reports, 2012, 13, 7-8.	2.0	25
155	Pivotal role for the ubiquitin Y59-E51 loop in lysine 48 polyubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8434-8439.	3.3	24
156	A GTPase-activating protein–binding protein (G3BP1)/antiviral protein relay conveys arteriosclerotic Wnt signals in aortic smooth muscle cells. Journal of Biological Chemistry, 2018, 293, 7942-7968.	1.6	24
157	Cooperative DNA binding mediated by KicGAS/ORF52 oligomerization allows inhibition of DNA-induced phase separation and activation of cGAS. Nucleic Acids Research, 2021, 49, 9389-9403.	6.5	22
158	Viperin Links Lipid Bodies to Immune Defense. Immunity, 2011, 34, 285-287.	6.6	21
159	Structural–functional interactions of NS1-BP protein with the splicing and mRNA export machineries for viral and host gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12218-E12227.	3.3	21
160	RNA Helicase Signaling Is Critical for Type I Interferon Production and Protection against Rift Valley Fever Virus during Mucosal Challenge. Journal of Virology, 2013, 87, 4846-4860.	1.5	20
161	Streptococci Engage TLR13 on Myeloid Cells in a Site-Specific Fashion. Journal of Immunology, 2016, 196, 2733-2741.	0.4	20
162	MITAgating Viral Infection. Immunity, 2008, 29, 513-515.	6.6	18

#	Article	IF	Citations
163	BHLHE40, a third transcription factor required for insulin induction of SREBP-1c mRNA in rodent liver. ELife, 2018, 7, .	2.8	18
164	TBK1 recruitment to STING mediates autoinflammatory arthritis caused by defective DNA clearance. Journal of Experimental Medicine, 2022, 219, .	4.2	18
165	Protein Ubiquitination: CHIPping Away the Symmetry. Molecular Cell, 2005, 20, 653-655.	4.5	17
166	Ubiquitin-Dependent Activation of NF-kappaB: K63-Linked Ubiquitin Chains—a Link to Cancer?. Cancer Biology and Therapy, 2004, 3, 286-288.	1.5	12
167	Epigenetic Repression of STING by MYC Promotes Immune Evasion and Resistance to Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer. Cancer Immunology Research, 2022, 10, 829-843.	1.6	12
168	Role of the Ubiquitinâ€"Proteasome Pathway in NF-κB Activation. , 1998, , 303-322.		7
169	Getting to grips with hepatitis. ELife, 2012, 1, e00301.	2.8	7
170	Smads keep TABs on inflammation. Nature Immunology, 2007, 8, 477-478.	7.0	5
171	Bacteria sting viral invaders. Nature, 2020, 586, 363-364.	13.7	5
172	Nuclear speckle integrity and function require TAO2 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	2
173	P857â€ONM-500 – a novel STING-activating therapeutic nanovaccine platform for cancer immunotherapy. , 2020, , .		1
174	Cecile M. Pickart (1954–2006). Molecular Cell, 2006, 22, 571-573.	4.5	0
175	Ubiquitin-Mediated Regulation of Protein Kinases in NFήB Signaling. , 2010, , 633-644.		0
176	Editorial overview: Innate immunity. Current Opinion in Immunology, 2015, 32, v-vi.	2.4	0
177	Activation of Nuclear Factor-κB., 2001,, 203-227.		0
178	Mitochondrial Antiviral Signaling. , 0, , 39-50.		0