Igor V Petenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6451237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First Results of the "Carbonaceous Aerosol in Rome and Environs (CARE)―Experiment: Beyond Current Standards for PM10. Atmosphere, 2017, 8, 249.	2.3	54
2	One Year of Surface-Based Temperature Inversions at Dome C, Antarctica. Boundary-Layer Meteorology, 2014, 150, 131-151.	2.3	41
3	Stable Surface-Based Turbulent Layer During the Polar Winter at Dome C, Antarctica: Sodar and In Situ Observations. Boundary-Layer Meteorology, 2019, 171, 101-128.	2.3	41
4	Observed and Modelled Convective Mixing-Layer Height at Dome C, Antarctica. Boundary-Layer Meteorology, 2014, 151, 597-608.	2.3	31
5	Measurements and Parametrizations of the Atmospheric Boundary-Layer Height at Dome C, Antarctica. Boundary-Layer Meteorology, 2012, 143, 189-206.	2.3	30
6	Local Circulation Diurnal Patterns and Their Relationship with Large-Scale Flows in a Coastal Area of the Tyrrhenian Sea. Boundary-Layer Meteorology, 2011, 139, 353-366.	2.3	26
7	Interconnections of the urban heat island with the spatial and temporal micrometeorological variability in Rome. Urban Climate, 2019, 29, 100493.	5.7	24
8	Spectral characteristics of East Antarctica meteorological parameters during 1994. Journal of Geophysical Research, 2001, 106, 12463-12476.	3.3	19
9	Large-Eddy Simulations of the Steady Wintertime Antarctic Boundary Layer. Boundary-Layer Meteorology, 2019, 173, 165-192.	2.3	17
10	Observations of near surface wind speed, temperature and radiative budget at Dome C, Antarctic Plateau during 2005. Antarctic Science, 2014, 26, 104-112.	0.9	16
11	Use of a High-Resolution Sodar to Study Surface-layer Turbulence at Night. Boundary-Layer Meteorology, 2012, 143, 177-188.	2.3	15
12	Wavelike Structures in the Turbulent Layer During the Morning Development of Convection at Dome C, Antarctica. Boundary-Layer Meteorology, 2016, 161, 289-307.	2.3	15
13	Sensitivity of near-surface meteorology to PBL schemes in WRF simulations in a port-industrial area with complex terrain. Atmospheric Research, 2021, 264, 105824.	4.1	15
14	Wavy Vertical Motions in the ABL Observed by Sodar. Boundary-Layer Meteorology, 2012, 143, 125-141.	2.3	14
15	A Businger Mechanism for Intermittent Bursting in the Stable Boundary Layer. Journals of the Atmospheric Sciences, 2020, 77, 3343-3360.	1.7	14
16	The surface layer observed by a high-resolution sodar at DOME C, Antarctica. Annals of Geophysics, 2014, 56, .	1.0	12
17	Some Statistics of the Temperature Structure Parameter in the Convective Boundary Layer Observed by Sodar. Boundary-Layer Meteorology, 2014, 150, 215-233.	2.3	9
18	Sodar Observation of the ABL Structure and Waves over the Black Sea Offshore Site. Atmosphere, 2019, 10, 811.	2.3	8

IGOR V PETENKO

#	Article	IF	CITATIONS
19	Turbulence, Low-Level Jets, and Waves in the Tyrrhenian Coastal Zone as Shown by Sodar. Atmosphere, 2020, 11, 28.	2.3	8
20	On the Redox-Activity and Health-Effects of Atmospheric Primary and Secondary Aerosol: Phenomenology. Atmosphere, 2022, 13, 704.	2.3	7
21	Surface and Aerodynamic Parameters Estimation for Urban and Rural Areas. Atmosphere, 2020, 11, 147.	2.3	5
22	Consumer Drones Targeting by Sodar (Acoustic Radar). IEEE Geoscience and Remote Sensing Letters, 2018, 15, 1692-1694.	3.1	3
23	Some aspects of the local atmospheric circulation in the Castelporziano Estate derived from sodar wind measurements. Rendiconti Lincei, 2015, 26, 275-282.	2.2	1
24	Flux–Profile Relationships in the Stable Boundary Layer—A Critical Discussion. Atmosphere, 2021, 12, 1197.	2.3	1