
Xianjun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6451146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nature Biotechnology, 2022, 40, 779-786.	9.4	35
2	Light-switchable diphtherin transgene system combined with losartan for triple negtative breast cancer therapy based on nano drug delivery system. International Journal of Pharmaceutics, 2022, 618, 121613.	2.6	5
3	A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nature Communications, 2021, 12, 615.	5.8	16
4	Structure-based investigation of fluorogenic Pepper aptamer. Nature Chemical Biology, 2021, 17, 1289-1295.	3.9	30
5	Spatiotemporally controllable diphtheria toxin expression using a light-switchable transgene system combining multifunctional nanoparticle delivery system for targeted melanoma therapy. Journal of Controlled Release, 2020, 319, 1-14.	4.8	25
6	Safe and Efficacious Diphtheria Toxin-Based Treatment for Melanoma: Combination of a Light-On Gene-Expression System and Nanotechnology. Molecular Pharmaceutics, 2020, 17, 301-315.	2.3	6
7	MDH1-mediated malate-aspartate NADH shuttle maintains the activity levels of fetal liver hematopoietic stem cells. Blood, 2020, 136, 553-571.	0.6	13
8	Illuminating NAD+ Metabolism in Live Cells and InÂVivo Using a Genetically Encoded Fluorescent Sensor. Developmental Cell, 2020, 53, 240-252.e7.	3.1	71
9	A single-component light sensor system allows highly tunable and direct activation of gene expression in bacterial cells. Nucleic Acids Research, 2020, 48, e33-e33.	6.5	44
10	A combination of LightOn gene expression system and tumor microenvironment-responsive nanoparticle delivery system for targeted breast cancer therapy. Acta Pharmaceutica Sinica B, 2020, 10, 1741-1753.	5.7	17
11	Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nature Biotechnology, 2019, 37, 1287-1293.	9.4	206
12	Development of Acrylamide-Based Rapid and Multicolor Fluorogenic Probes for High Signal-to-Noise Live Cell Imaging. Bioconjugate Chemistry, 2019, 30, 184-191.	1.8	8
13	Multicoloured fluorescent indicators for live-cell and in vivo imaging of inorganic mercury dynamics. Free Radical Biology and Medicine, 2018, 121, 26-37.	1.3	2
14	Glucose monitoring in living cells with single fluorescent protein-based sensors. RSC Advances, 2018, 8, 2485-2489.	1.7	30
15	Monitoring cellular redox state under hypoxia using a fluorescent sensor based on eel fluorescent protein. Free Radical Biology and Medicine, 2018, 120, 255-265.	1.3	19
16	Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nature Protocols, 2018, 13, 2362-2386.	5.5	70
17	A Single-Component Optogenetic System Allows Stringent Switch of Gene Expression in Yeast Cells. ACS Synthetic Biology, 2018, 7, 2045-2053.	1.9	34
18	A genetically encoded toolkit for tracking live-cell histidine dynamics in space and time. Scientific Reports, 2017, 7, 43479.	1.6	34

XIANJUN CHEN

#	Article	IF	CITATIONS
19	Light-induced protein degradation in human-derived cells. Biochemical and Biophysical Research Communications, 2017, 487, 241-246.	1.0	18
20	Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nature Methods, 2017, 14, 720-728.	9.0	223
21	An extraordinary stringent and sensitive light-switchable gene expression system for bacterial cells. Cell Research, 2016, 26, 854-857.	5.7	44
22	Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light. Nucleic Acids Research, 2016, 44, 2677-2690.	6.5	38
23	SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents. Cell Metabolism, 2015, 21, 777-789.	7.2	311
24	A light-switchable bidirectional expression module allowing simultaneous regulation of multiple genes. Biochemical and Biophysical Research Communications, 2015, 465, 769-776.	1.0	13
25	Fine tuning the LightOn light-switchable transgene expression system. Biochemical and Biophysical Research Communications, 2013, 440, 419-423.	1.0	39
26	Spatiotemporal Control of Gene Expression in Mammalian Cells and in Mice Using the LightOn System. Current Protocols in Chemical Biology, 2013, 5, 111-129.	1.7	29
27	Spatiotemporal control of gene expression by a light-switchable transgene system. Nature Methods, 2012, 9, 266-269.	9.0	446
28	Identification of small molecular inhibitors for Ero1p by structure-based virtual screening. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1118-1121.	1.0	2
29	Structure–function analysis of human protein Ero1-Lα. Biochemical and Biophysical Research Communications, 2009, 389, 645-650.	1.0	9