Huabo Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6451115/publications.pdf Version: 2024-02-01

Ημλρο Su

#	Article	IF	CITATIONS
1	Crosstalk between Long Noncoding RNAs and MicroRNAs in Health and Disease. International Journal of Molecular Sciences, 2016, 17, 356.	4.1	207
2	Autophagy and p62 in Cardiac Proteinopathy. Circulation Research, 2011, 109, 296-308.	4.5	177
3	Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. Journal of Clinical Investigation, 2011, 121, 3689-3700.	8.2	169
4	Long Non-Coding RNAs as Master Regulators in Cardiovascular Diseases. International Journal of Molecular Sciences, 2015, 16, 23651-23667.	4.1	140
5	Protein quality control and degradation in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2008, 45, 11-27.	1.9	107
6	The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. Cardiovascular Research, 2010, 85, 253-262.	3.8	106
7	COP9 Signalosome Regulates Autophagosome Maturation. Circulation, 2011, 124, 2117-2128.	1.6	102
8	Genetically Induced Moderate Inhibition of the Proteasome in Cardiomyocytes Exacerbates Myocardial Ischemia-Reperfusion Injury in Mice. Circulation Research, 2012, 111, 532-542.	4.5	100
9	MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovascular Research, 2015, 106, 387-397.	3.8	100
10	Proteasome functional insufficiency activates the calcineurin–NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts. Cardiovascular Research, 2010, 88, 424-433.	3.8	99
11	Perturbation of Cullin Deneddylation via Conditional Csn8 Ablation Impairs the Ubiquitin–Proteasome System and Causes Cardiomyocyte Necrosis and Dilated Cardiomyopathy in Mice. Circulation Research, 2011, 108, 40-50.	4.5	95
12	αB-Crystallin Suppresses Pressure Overload Cardiac Hypertrophy. Circulation Research, 2008, 103, 1473-1482.	4.5	79
13	Carvedilol-responsive microRNAs, miR-199a-3p and -214 protect cardiomyocytes from simulated ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H371-H383.	3.2	74
14	Posttranslational Modification and Quality Control. Circulation Research, 2013, 112, 367-381.	4.5	73
15	The Calcineurin-TFEB-p62 Pathway Mediates the Activation of Cardiac Macroautophagy by Proteasomal Malfunction. Circulation Research, 2020, 127, 502-518.	4.5	73
16	A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2018, 114, 72-82.	1.9	72
17	Proteasome functional insufficiency in cardiac pathogenesis. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2207-H2219.	3.2	65
18	p62 Stages an Interplay Between the Ubiquitin-Proteasome System and Autophagy in the Heart of Defense Against Proteotoxic Stress. Trends in Cardiovascular Medicine, 2011, 21, 224-228.	4.9	64

Ниаво Su

#	Article	lF	CITATIONS
19	MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovascular Research, 2017, 113, 1603-1614.	3.8	62
20	β-Arrestin1–Biased β ₁ -Adrenergic Receptor Signaling Regulates MicroRNA Processing. Circulation Research, 2014, 114, 833-844.	4.5	60
21	MicroRNA-150 deletion in mice protects kidney from myocardial infarction-induced acute kidney injury. American Journal of Physiology - Renal Physiology, 2015, 309, F551-F558.	2.7	57
22	Enzymatic Activity of the Scaffold Protein Rapsyn for Synapse Formation. Neuron, 2016, 92, 1007-1019.	8.1	57
23	Neddylation mediates ventricular chamber maturation through repression of Hippo signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4101-E4110.	7.1	57
24	The COP9 Signalosome Is Required for Autophagy, Proteasome-Mediated Proteolysis, and Cardiomyocyte Survival in Adult Mice. Circulation: Heart Failure, 2013, 6, 1049-1057.	3.9	56
25	Ufm1-Specific Ligase Ufl1 Regulates Endoplasmic Reticulum Homeostasis and Protects Against Heart Failure. Circulation: Heart Failure, 2018, 11, e004917.	3.9	55
26	Proteasome malfunction activates macroautophagy in the heart. American Journal of Cardiovascular Disease, 2011, 1, 214-26.	0.5	46
27	COP9 Signalosome Controls the Degradation of Cytosolic Misfolded Proteins and Protects Against Cardiac Proteotoxicity. Circulation Research, 2015, 117, 956-966.	4.5	37
28	Stabilization and encapsulation of a staphylokinase variant (K35R) into poly(lactic-co-glycolic acid) microspheres. International Journal of Pharmaceutics, 2006, 309, 101-108.	5.2	34
29	Neddylation and deneddylation in cardiac biology. American Journal of Cardiovascular Disease, 2014, 4, 140-58.	0.5	34
30	Cardiac proteasome functional insufficiency plays a pathogenic role in diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2017, 102, 53-60.	1.9	33
31	The COP9 signalosome negatively regulates proteasome proteolytic function and is essential to transcription. International Journal of Biochemistry and Cell Biology, 2009, 41, 615-624.	2.8	30
32	TEAD1 protects against necroptosis in postmitotic cardiomyocytes through regulation of nuclear DNA-encoded mitochondrial genes. Cell Death and Differentiation, 2021, 28, 2045-2059.	11.2	30
33	NEDD8 Ultimate Buster 1 Long (NUB1L) Protein Suppresses Atypical Neddylation and Promotes the Proteasomal Degradation of Misfolded Proteins. Journal of Biological Chemistry, 2015, 290, 23850-23862.	3.4	29
34	Targeting ATGL to rescue BSCL2 lipodystrophy and its associated cardiomyopathy. JCI Insight, 2019, 4, .	5.0	24
35	Neddylation stabilizes Nav1.1 to maintain interneuron excitability and prevent seizures in murine epilepsy models. Journal of Clinical Investigation, 2021, 131, .	8.2	21
36	The Lectin-like Domain of TNF Increases ENaC Open Probability through a Novel Site at the Interface between the Second Transmembrane and C-terminal Domains of the ݱ-Subunit. Journal of Biological Chemistry, 2016, 291, 23440-23451.	3.4	20

Ниаво Su

#	Article	IF	CITATIONS
37	Autophagy and p62 in cardiac protein quality control. Autophagy, 2011, 7, 1382-1383.	9.1	19
38	COP9 signalosome subunit 8 is required for postnatal hepatocyte survival and effective proliferation. Cell Death and Differentiation, 2011, 18, 259-270.	11.2	18
39	Ubiquitin and ubiquitin-like proteins in cardiac disease and protection. Current Drug Targets, 2018, 19, 989-1002.	2.1	18
40	Long noncoding RNAs and their roles in skeletal muscle fate determination. Non-coding RNA Investigation, 2017, 1, 24-24.	0.6	17
41	Adenosine Kinase Inhibition Augments Conducted Vasodilation and Prevents Left Ventricle Diastolic Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation: Heart Failure, 2019, 12, e005762.	3.9	17
42	Neddylation, an Emerging Mechanism Regulating Cardiac Development and Function. Frontiers in Physiology, 2020, 11, 612927.	2.8	17
43	Neddylation is critical to cortical development by regulating Wnt/β-catenin signaling. Proceedings of the United States of America, 2020, 117, 26448-26459.	7.1	16
44	Genomic analysis of circular RNAs in heart. BMC Medical Genomics, 2020, 13, 167.	1.5	16
45	Construction and Characterization of Novel Staphylokinase Variants with Antiplatelet Aggregation Activity and Reduced Immunogenecity. Acta Biochimica Et Biophysica Sinica, 2004, 36, 336-342.	2.0	14
46	Characterization of a novel bifunctional mutant of staphylokinase with platelet-targeted thrombolysis and antiplatelet aggregation activities. BMC Molecular Biology, 2007, 8, 88.	3.0	14
47	Transient inhibition of neddylation at neonatal stage evokes reversible cardiomyopathy and predisposes the heart to isoproterenol-induced heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1406-H1416.	3.2	14
48	A new gold(I) complex-Au(PPh3)PT is a deubiquitinase inhibitor and inhibits tumor growth. EBioMedicine, 2019, 39, 159-172.	6.1	14
49	COP9 Signalosome Suppresses RIPK1-RIPK3–Mediated Cardiomyocyte Necroptosis in Mice. Circulation: Heart Failure, 2020, 13, e006996.	3.9	14
50	Functional properties of a novel mutant of staphylokinase with platelet-targeted fibrinolysis and antiplatelet aggregation activities. European Journal of Pharmacology, 2007, 566, 137-144.	3.5	13
51	β-arrestin-biased agonism of β-adrenergic receptor regulates Dicer-mediated microRNA maturation to promote cardioprotective signaling. Journal of Molecular and Cellular Cardiology, 2018, 118, 225-236.	1.9	13
52	Hepatic Deficiency of COP9 Signalosome Subunit 8 Induces Ubiquitin-Proteasome System Impairment and Bim-Mediated Apoptosis in Murine Livers. PLoS ONE, 2013, 8, e67793.	2.5	10
53	The COP9 signalosome coerces autophagy and the ubiquitin-proteasome system to police the heart. Autophagy, 2016, 12, 601-602.	9.1	8
54	Characterization of mice carrying a conditional TEAD1 allele. Genesis, 2017, 55, e23085.	1.6	7

Ниаво Su

#	Article	IF	CITATIONS
55	Identification of gene signatures regulated by carvedilol in mouse heart. Physiological Genomics, 2015, 47, 376-385.	2.3	6
56	Refolding of a Staphylokinase Variant Y1-Sak by Reverse Dilution. Applied Biochemistry and Biotechnology, 2008, 151, 29-41.	2.9	5
57	Unraveling Enigma in the Z-Disks. Circulation Research, 2010, 107, 321-323.	4.5	5
58	Proteasome malfunction activates the PPP3/calcineurin-TFEB-SQSTM1/p62 pathway to induce macroautophagy in the heart. Autophagy, 2020, 16, 2114-2116.	9.1	5
59	Neddylation Regulates Class IIa and III Histone Deacetylases to Mediate Myoblast Differentiation. International Journal of Molecular Sciences, 2021, 22, 9509.	4.1	5
60	Adenosine kinase inhibition enhances microvascular dilator function and improves left ventricle diastolic dysfunction. Microcirculation, 2020, 27, e12624.	1.8	4
61	BSCL2/Seipin deficiency in hearts causes cardiac energy deficit and dysfunction via inducing excessive lipid catabolism. Clinical and Translational Medicine, 2022, 12, e736.	4.0	4
62	FoxO3 hastens autophagy and shrinks the heart but does not curtail pathological hypertrophy in adult mice. Cardiovascular Research, 2011, 91, 561-562.	3.8	3
63	Cullin 2â€RBX1 E3 ligase and USP2 regulate antithrombin ubiquitination and stability. FASEB Journal, 2021, 35, e21800.	0.5	3
64	Targeting neddylation E2 for anticancer therapy, putting new wine into new bottles?. EBioMedicine, 2019, 45, 3-4.	6.1	1
65	The ubiquitin-proteasome system in cardiac remodeling and failure. Journal of Molecular and Cellular Cardiology, 2006, 41, 748-748.	1.9	0
66	Targeting ATGL to rescue BSCL2 lipodystrophy and its associated cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2020, 140, 55.	1.9	0
67	Editorial: Post-translational Modifications and Compartmentalized Protein Quality Control in Cardiac Muscle and Disease. Frontiers in Physiology, 2021, 12, 745887.	2.8	0
68	Genetic inhibition of cullinâ€based ubiquitin ligase dynamics in adult mouse hearts suffices to cause heart failure (HF). FASEB Journal, 2007, 21, A870.	0.5	0
69	The COP9 signalosome subunit 8 (CSN8) hypomorphism impairs deneddylation and exacerbates desminâ€related cardiomyopathy (DRC). FASEB Journal, 2013, 27, 1197.1.	0.5	0
70	Defense Against Proteotoxic Stress in the Heart. , 2014, , 187-201.		0
71	Abstract 530: The Ufm1 Specific Ligase 1 Regulates Endoplasmic Reticulum Homeostasis and Protects Against Heart Failure. Circulation Research, 2018, 123, .	4.5	0
72	Neddylation is Required for Ventricular Chamber Maturation through Sustaining Cardiomyocyte Proliferation and Developmental Metabolic Transition. FASEB Journal, 2019, 33, 829.7.	0.5	0

#	Article	IF	CITATIONS
73	Abstract 289: Neddylation is Essential for Cardiac Metabolic Maturation in the Developing Heart. Circulation Research, 2019, 125, .	4.5	Ο