Kevin M Rosso

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6450883/kevin-m-rosso-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13,508 100 335 57 h-index g-index citations papers 6.1 6.65 356 15,513 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
335	Understanding Competitive Phosphate and Silicate Adsorption on Goethite by Connecting Batch Experiments with Density Functional Theory Calculations <i>Environmental Science & amp; Technology</i> , 2022 , 56, 823-834	10.3	2
334	Electron-Stimulated Formation and Release of Molecular Hydrogen and Oxygen from Boehmite Nanoplatelet Films. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 2542-2547	3.8	
333	Understanding the Importance of Labile Fe(III) during Fe(II)-Catalyzed Transformation of Metastable Iron Oxyhydroxides <i>Environmental Science & Environmental </i>	10.3	3
332	Ab Initio Evaluation of Solid-State Transformation Pathways from Ferrihydrite to Goethite. <i>ACS Earth and Space Chemistry</i> , 2022 , 6, 800-809	3.2	
331	Particle-based hematite crystallization is invariant to initial particle morphology <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2112679119	11.5	2
330	No Hydrogen Bonding between Water and Hydrophilic Single Crystal MgO Surfaces?. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 26132-26138	3.8	2
329	Theory-Guided Inelastic Neutron Scattering of Crystalline Alkaline Aluminate Salts Bearing Principal Motifs of Solution-State Species. <i>Inorganic Chemistry</i> , 2021 , 60, 16223-16232	5.1	1
328	Molecular Examination of Ion-Pair Competition in Alkaline Aluminate Solutions Using In Situ Liquid SIMS. <i>Analytical Chemistry</i> , 2021 , 93, 1068-1075	7.8	1
327	Predicting the temperature dependence of self-diffusion behavior in Ni-Cr alloys via molecular dynamics. <i>Materials Today Communications</i> , 2021 , 26, 101982	2.5	1
326	Combined multiplet theory and experiment for the Fe 2p and 3p XPS of FeO and FeO. <i>Journal of Chemical Physics</i> , 2021 , 154, 094709	3.9	14
325	The Steady March toward Biomimetic Nanoelectronics. <i>ACS Nano</i> , 2021 , 15, 7844-7847	16.7	O
324	Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries. <i>Science</i> , 2021 , 372, 836-840	33.3	40
323	Crystallization and Phase Transformations of Aluminum (Oxy)hydroxide Polymorphs in Caustic Aqueous Solution. <i>Inorganic Chemistry</i> , 2021 , 60, 9820-9832	5.1	6
322	Fe(II) Redox Chemistry in the Environment. <i>Chemical Reviews</i> , 2021 , 121, 8161-8233	68.1	37
321	Hydroxide promotes ion pairing in the NaNO-NaOH-HO system. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 112-122	3.6	3
320	Facet-Dependent Photodegradation of Methylene Blue by Hematite Nanoplates in Visible Light. <i>Environmental Science & Environmental Science & Environme</i>	10.3	26
319	Self-similar mesocrystals form via interface-driven nucleation and assembly. <i>Nature</i> , 2021 , 590, 416-422	50.4	33

318	Ab initio thermodynamics reveals the nanocomposite structure of ferrihydrite. <i>Communications Chemistry</i> , 2021 , 4,	6.3	4
317	Labile Fe(III) supersaturation controls nucleation and properties of product phases from Fe(II)-catalyzed ferrihydrite transformation. <i>Geochimica Et Cosmochimica Acta</i> , 2021 , 309, 272-285	5.5	2
316	Cluster defects in gibbsite nanoplates grown at acidic to neutral pH. <i>Nanoscale</i> , 2021 , 13, 17373-17385	7.7	O
315	The controlling role of atmosphere in dawsonite gibbsite precipitation from tetrahedral aluminate species. <i>Dalton Transactions</i> , 2021 , 50, 13438-13446	4.3	1
314	Citrate Controls Fe(II)-Catalyzed Transformation of Ferrihydrite by Complexation of the Labile Fe(III) Intermediate. <i>Environmental Science & Environmental Science & Environm</i>	10.3	20
313	Solid-State Recrystallization Pathways of Sodium Aluminate Hydroxy Hydrates. <i>Inorganic Chemistry</i> , 2020 , 59, 6857-6865	5.1	7
312	Vacancy ordering during selective oxidation of NiAl. <i>Materialia</i> , 2020 , 12, 100783	3.2	4
311	Two-step route to size and shape controlled gibbsite nanoplates and the crystal growth mechanism. <i>CrystEngComm</i> , 2020 , 22, 2555-2565	3.3	6
310	Electronic and Vibrational Contributions to the Bulk Stabilities of Trivalent 3d Transition Metal Oxyhydroxides from Electronic Structure Calculations. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 7500-	7380	
309	Emerging investigator series: ion diffusivities in nanoconfined interfacial water films contribute to mineral carbonation thresholds. <i>Environmental Science: Nano</i> , 2020 , 7, 1068-1081	7.1	8
308	Photo-production of reactive oxygen species and degradation of dissolved organic matter by hematite nanoplates functionalized by adsorbed oxalate. <i>Environmental Science: Nano</i> , 2020 , 7, 2278-22	.92 ¹	12
307	Polaronic structure of excess electrons and holes for a series of bulk iron oxides. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 10699-10709	3.6	6
306	Surface Hydration and Hydroxyl Configurations of Gibbsite and Boehmite Nanoplates. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 5275-5285	3.8	13
305	Phase Transition and Liquid-like Superionic Conduction in Ag2S. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 10150-10158	3.8	2
304	Connecting particle interactions to agglomerate morphology and rheology of boehmite nanocrystal suspensions. <i>Journal of Colloid and Interface Science</i> , 2020 , 572, 328-339	9.3	12
303	Correlating inter-particle forces and particle shape to shear-induced aggregation/fragmentation and rheology for dilute anisotropic particle suspensions: A complementary study via capillary rheometry and in-situ small and ultra-small angle X-ray scattering. <i>Journal of Colloid and Interface</i>	9.3	10
302	Evolution of Radicals from the Photolysis of High Ionic Strength Alkaline Nitrite Solutions. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 3019-3025	2.8	3
301	A Filon-like integration strategy for calculating exact exchange in periodic boundary conditions: a plane-wave DFT implementation. <i>Materials Theory</i> , 2020 , 4,	2.2	3

300	Electron transfer calculations between edge sharing octahedra in hematite, goethite, and annite. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 291, 79-91	5.5	6
299	The role of surface hydroxyls on the radiolysis of gibbsite and boehmite nanoplatelets. <i>Journal of Hazardous Materials</i> , 2020 , 398, 122853	12.8	8
298	Analysis of the Fe 2p XPS for hematite FeO: Consequences of covalent bonding and orbital splittings on multiplet splittings. <i>Journal of Chemical Physics</i> , 2020 , 152, 014704	3.9	27
297	Ion-ion interactions enhance aluminum solubility in alkaline suspensions of nano-gibbsite (ḤAl(OH)) with sodium nitrite/nitrate. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 4368-4378	3.6	7
296	Labile Fe(III) from sorbed Fe(II) oxidation is the key intermediate in Fe(II)-catalyzed ferrihydrite transformation. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 272, 105-120	5.5	26
295	Covalency in FeO and FeO: Consequences for XPS satellite intensity. <i>Journal of Chemical Physics</i> , 2020 , 153, 194702	3.9	9
294	Mechanisms of Al Dimerization in Alkaline Solutions. <i>Inorganic Chemistry</i> , 2020 , 59, 18181-18189	5.1	1
293	Influence of soluble oligomeric aluminum on precipitation in the Al-KOH-HO system. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 24677-24685	3.6	4
292	Rethinking the magnetic properties of lepidocrocite: A density functional theory and cluster expansion study. <i>Journal of Applied Physics</i> , 2020 , 128, 103906	2.5	
291	Radiation-Induced Interfacial Hydroxyl Transformation on Boehmite and Gibbsite Basal Surfaces. Journal of Physical Chemistry C, 2020 , 124, 22185-22191	3.8	3
290	Nanoscale observations of Fe(II)-induced ferrihydrite transformation. <i>Environmental Science: Nano</i> , 2020 , 7, 2953-2967	7.1	8
289	Effect of Cr(III) Adsorption on the Dissolution of Boehmite Nanoparticles in Caustic Solution. <i>Environmental Science & Environmental </i>	10.3	2
288	Intermediate Species in the Crystallization of Sodium Aluminate Hydroxy Hydrates. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 12337-12345	3.8	5
287	Inference of principal species in caustic aluminate solutions through solid-state spectroscopic characterization. <i>Dalton Transactions</i> , 2020 , 49, 5869-5880	4.3	6
286	Temperature Dependence of Self-Diffusion in Cr2O3 from First Principles. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 22139-22150	3.8	6
285	Transformation of Gibbsite to Boehmite in Caustic Aqueous Solution at Hydrothermal Conditions. <i>Crystal Growth and Design</i> , 2019 , 19, 5557-5567	3.5	12
284	Cr(III) Adsorption by Cluster Formation on Boehmite Nanoplates in Highly Alkaline Solution. <i>Environmental Science & Environmental Science & Environme</i>	10.3	27
283	Cluster embedding of ionic systems: Point charges and extended ions. <i>Journal of Chemical Physics</i> , 2019 , 151, 044107	3.9	8

Unraveling Gibbsite Transformation Pathways into LiAl-LDH in Concentrated Lithium Hydroxide. <i>Inorganic Chemistry</i> , 2019 , 58, 12385-12394	5.1	10
Redistribution of Electron Equivalents between Magnetite and Aqueous Fe Induced by a Model Quinone Compound AQDS. <i>Environmental Science & Environmental Science & Environment</i>	10.3	11
Lateral water structure connects metal oxide nanoparticle faces. <i>Journal of Materials Research</i> , 2019 , 34, 456-464	2.5	2
Anomalously low activation energy of nanoconfined MgCO precipitation. <i>Chemical Communications</i> , 2019 , 55, 6835-6837	5.8	10
Surface-Catalyzed Oxygen Exchange during Mineral Carbonation in Nanoscale Water Films. <i>Journal of Physical Chemistry C</i> , 2019 ,	3.8	12
Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. <i>Science</i> , 2019 , 363,	33.3	250
Visualizing the iron atom exchange front in the Fe(II)-catalyzed recrystallization of goethite by atom probe tomography. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 2866-2874	11.5	34
Facet-Specific Photocatalytic Degradation of Organics by Heterogeneous Fenton Chemistry on Hematite Nanoparticles. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	57
Electron- and Thermal-Stimulated Synthesis of Water on Boehmite (EAlOOH) Nanoplates. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 18986-18992	3.8	5
Quantitative Review of Olivine Carbonation Kinetics: Reactivity Trends, Mechanistic Insights, and Research Frontiers. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 431-442	11	16
Effect of structure and composition on the electronic excitation induced amorphization of LaTiZrO ceramics. <i>Scientific Reports</i> , 2019 , 9, 8190	4.9	4
Facet-selective adsorption of Fe(II) on hematite visualized by nanoscale secondary ion mass spectrometry. <i>Environmental Science: Nano</i> , 2019 , 6, 2429-2440	7.1	8
Reply to Comment on Roles of Hydration and Magnetism on the Structure of Ferrihydrite from First Principles (IACS Earth and Space Chemistry, 2019, 3, 1581-1583)	3.2	3
Structure, Magnetism, and the Interaction of Water with Ti-Doped FeO Surfaces. <i>Langmuir</i> , 2019 , 35, 13872-13879	4	4
A Closer Look at Fe(II) Passivation of Goethite. ACS Earth and Space Chemistry, 2019, 3, 2717-2725	3.2	9
Iron Redox Chemistry and Its Environmental Impact: A Virtual Special Issue. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 2374-2375	3.2	1
Synthesis of 2D Hexagonal Hematite Nanosheets and the Crystal Growth Mechanism. <i>Inorganic Chemistry</i> , 2019 , 58, 16727-16735	5.1	14
Reductive Dissolution Mechanisms at the Hematite-Electrolyte Interface Probed by in Situ X-ray Scattering. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 8077-8085	3.8	6
	Redistribution of Electron Equivalents between Magnetite and Aqueous Fe Induced by a Model Quinone Compound AQDS. Environmental Science & Description of Electron Equivalents between Magnetite and Aqueous Fe Induced by a Model Quinone Compound AQDS. Environmental Science & Description of Materials Research, 2019, 33, 456-464 Lateral water structure connects metal oxide nanoparticle faces. Journal of Materials Research, 2019, 34, 456-464 Anomalously low activation energy of nanoconfined MgCO precipitation. Chemical Communications, 2019, 55, 6835-6837 Surface-Catalyzed Oxygen Exchange during Mineral Carbonation in Nanoscale Water Films. Journal of Physical Chemistry C, 2019, 303. Visualizing the iron atom exchange front in the Fe(II)-catalyzed recrystallization of goethite by atom probe tomography. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2866-2874 Facet-Specific Photocatalytic Degradation of Organics by Heterogeneous Fenton Chemistry on Hematite Nanoparticles. Environmental Science & Description of Physical Chemistry C, 2019, 123, 18986-18992 Quantitative Review of Olivine Carbonation Kinetics: Reactivity Trends, Mechanistic Insights, and Research Frontiers. Environmental Science and Technology Letters, 2019, 6, 431-442 Effect of structure and composition on the electronic excitation induced amorphization of LaTiZrO ceramics. Scientific Reports, 2019, 9, 8190 Facet-Selective adsorption of Fe(II) on hematite visualized by nanoscale secondary ion mass spectrometry. Environmental Science: Nano, 2019, 6, 2429-2440 Reply to Comment on Boles of Hydration and Magnetism on the Structure of Ferrihydrite from First PrinciplesIlaCS Earth and Space Chemistry, 2019, 3, 1581-1583 Structure, Magnetism, and the Interaction of Water with Ti-Doped FeO Surfaces. Langmuir, 2019, 35, 13872-13879 A Closer Look at Fe(II) Passivation of Goethite. ACS Earth and Space Chemistry, 2019, 3, 2717-2725 Iron Redox Chemistry and its Environmental Impact: A Virtual Special Issue. ACS	Redistribution of Electron Equivalents between Magnetite and Aqueous Fe Induced by a Model Quinone Compound AQDS. Environmental Science & Samp; Technology, 2019, 53, 1863-1873 Lateral water structure connects metal oxide nanoparticle faces. Journal of Materials Research, 2019, 34, 456-464 Anomalously low activation energy of nanoconfined MgCO precipitation. Chemical Communications, 58 Surface-Catalyzed Oxygen Exchange during Mineral Carbonation in Nanoscale Water Films. Journal of Physical Chemistry C, 2019. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science, 2019, 363, Visualizing the iron atom exchange front in the Fe(II)-catalyzed recrystallization of goethite by atom probe tomography. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2866-2874 Facet-Specific Photocatalytic Degradation of Organics by Heterogeneous Fenton Chemistry on Hematite Nanoparticles. Environmental Science & Bamp; Technology, 2019, 53, 10197-10207 Electron- and Thermal-Stimulated Synthesis of Water on Boehmite (BAIOOH) Nanoplates. Journal of Physical Chemistry, C, 2019, 123, 18986-18992 Quantitative Review of Olivine Carbonation Kinetics: Reactivity Trends, Mechanistic Insights, and Research Frontiers. Environmental Science and Technology Letters, 2019, 6, 431-442 Effect of structure and composition on the electronic excitation induced amorphization of LaTiZrO ceramics. Scientific Reports, 2019, 9, 8190 Facet-selective adsorption of Fe(II) on hematite visualized by nanoscale secondary ion mass spectrometry. Environmental Science: Nano, 2019, 6, 2429-2440 Reply to Bomment on Boles of Hydration and Magnetism on the Structure of Ferrihydrite from First PrinciplesIACS Earth and Space Chemistry, 2019, 3, 1581-1583 Structure, Magnetism, and the Interaction of Water with Ti-Doped FeO Surfaces. Langmuir, 2019, 35, 13872-13879 A Closer Look at Fe(II) Passivation of Goethite. ACS Earth and Space Chemistry, 2019, 3, 2374-2375 Synthesis of 2D Hexa

264	Energetics and the Role of Defects in Fe(II)-Catalyzed Goethite Recrystallization from Molecular Simulations. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 262-272	3.2	11
263	Radiocesium interaction with clay minerals: Theory and simulation advances Post-Fukushima. <i>Journal of Environmental Radioactivity</i> , 2019 , 210, 105809	2.4	6
262	Roles of Hydration and Magnetism on the Structure of Ferrihydrite from First Principles. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 70-78	3.2	14
261	Radiocesium interaction with clay minerals: Theory and simulation advances Post-Fukushima. <i>Journal of Environmental Radioactivity</i> , 2018 , 189, 135-145	2.4	45
260	Surface Charge Effects on Fe(II) Sorption and Oxidation at (110) Goethite Surfaces. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 10059-10066	3.8	6
259	Radiolytic stability of gibbsite and boehmite with adsorbed water. <i>Journal of Nuclear Materials</i> , 2018 , 501, 224-233	3.3	24
258	Electrochemical Interfaces: Potential-Specific Structure at the Hematite Electrolyte Interface (Adv. Funct. Mater. 8/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870054	15.6	1
257	Resolving Iron(II) Sorption and Oxidative Growth on Hematite (001) Using Atom Probe Tomography. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 3903-3914	3.8	20
256	Synthesis of nanometer-sized fayalite and magnesium-iron(II) mixture olivines. <i>Journal of Colloid and Interface Science</i> , 2018 , 515, 129-138	9.3	14
255	The Role of Defects in Fe(II)-Goethite Electron Transfer. <i>Environmental Science & Environmental Scien</i>	10.3	44
254	Consequences of realistic embedding for the L edge XAS of ⊞eO. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 4396-4403	3.6	12
253	Size and Morphology Controlled Synthesis of Boehmite Nanoplates and Crystal Growth Mechanisms. <i>Crystal Growth and Design</i> , 2018 , 18, 3596-3606	3.5	58
252	Free-Energy Landscape of the Dissolution of Gibbsite at High pH. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1809-1814	6.4	14
251	In Situ Al NMR Spectroscopy of Aluminate in Sodium Hydroxide Solutions above and below Saturation with Respect to Gibbsite. <i>Inorganic Chemistry</i> , 2018 , 57, 11864-11873	5.1	23
250	Facet-dependent contaminant removal properties of hematite nanocrystals and their environmental implications. <i>Environmental Science: Nano</i> , 2018 , 5, 1790-1806	7.1	64
249	Technetium Stabilization in Low-Solubility Sulfide Phases: A Review. <i>ACS Earth and Space Chemistry</i> , 2018 , 2, 532-547	3.2	27
248	Water Structure Controls Carbonic Acid Formation in Adsorbed Water Films. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 4988-4994	6.4	11
247	Reversible Fe(II) uptake/release by magnetite nanoparticles. <i>Environmental Science: Nano</i> , 2018 , 5, 154	5-71.555	13

(2017-2018)

246	Potential-Specific Structure at the Hematite E lectrolyte Interface. <i>Advanced Functional Materials</i> , 2018 , 28, 1705618	15.6	13
245	Al Pulsed Field Gradient, Diffusion-NMR Spectroscopy of Solvation Dynamics and Ion Pairing in Alkaline Aluminate Solutions. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 10907-10912	3.4	11
244	Boehmite and Gibbsite Nanoplates for the Synthesis of Advanced Alumina Products. <i>ACS Applied Nano Materials</i> , 2018 , 1, 7115-7128	5.6	39
243	Effects of Ionic Strength, Salt, and pH on Aggregation of Boehmite Nanocrystals: Tumbler Small-Angle Neutron and X-ray Scattering and Imaging Analysis. <i>Langmuir</i> , 2018 , 34, 15839-15853	4	20
242	Acidity Constants of the Hematite-Liquid Water Interface from Ab Initio Molecular Dynamics. Journal of Physical Chemistry Letters, 2018 , 9, 5574-5582	6.4	20
241	Impact of Solution Chemistry and Particle Anisotropy on the Collective Dynamics of Oriented Aggregation. <i>ACS Nano</i> , 2018 , 12, 10114-10122	16.7	28
240	X-ray Linear Dichroism in Apatite. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11698-11704	16.4	14
239	Accessing crystal-crystal interaction forces with oriented nanocrystal atomic force microscopy probes. <i>Nature Protocols</i> , 2018 , 13, 2005-2030	18.8	9
238	Surface Chemistry Affects the Efficacy of the Hydration Force between Two ZnO(101 0) Surfaces. Journal of Physical Chemistry C, 2018 , 122, 12259-12266	3.8	15
237	First-Principles Investigation of Native Interstitial Diffusion in Cr2O3. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 12984-12993	3.8	15
236	A Thermodynamic Model for ZrO2(am) Solubility at 25 LC in the Ca2+Na+H+IIIDHH2O System: A Critical Review. <i>Journal of Solution Chemistry</i> , 2018 , 47, 855-891	1.8	4
235	Corresponding Orbitals Derived from Periodic Bloch States for Electron Transfer Calculations of Transition Metal Oxides. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 4416-4426	6.4	11
234	Ab Initio Molecular Dynamics Reveal Spectroscopic Siblings and Ion Pairing as New Challenges for Elucidating Prenucleation Aluminum Speciation. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 7394-7402	3.4	25
233	Iron Dissolution from Goethite (⊞eOOH) Surfaces in Water by Ab Initio Enhanced Free-Energy Simulations. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 16086-16091	3.8	19
232	Vacancies and Vacancy-Mediated Self Diffusion in Cr2O3: A First-Principles Study. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 1817-1831	3.8	20
231	Dynamic Stabilization of Metal Oxide-Water Interfaces. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2581-2584	16.4	48
230	Direction-specific van der Waals attraction between rutile TiO nanocrystals. <i>Science</i> , 2017 , 356, 434-437	33.3	80
229	Electron Mobility and Trapping in Ferrihydrite Nanoparticles. <i>ACS Earth and Space Chemistry</i> , 2017 , 1, 216-226	3.2	13

228	Stochastic Simulation of Isotopic Exchange Mechanisms for Fe(II)-Catalyzed Recrystallization of Goethite. <i>Environmental Science & Environmental Scien</i>	10.3	17
227	Improving the Performance of Hybrid Functional-Based Molecular Dynamics Simulation through Screening of Hartree-Fock Exchange Forces. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 21	78 ⁶ 2484	4 ⁷
226	Nucleation and Epitaxy-Mediated Phase Transformation of a Precursor Cadmium Carbonate Phase at the Calcite/Water Interface. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 5012-5019	3.8	11
225	Water Solubility at Saturation for CO2ITH4 Mixtures at 323.2 K and 9.000 MPa. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 1608-1614	2.8	16
224	Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment. <i>Nature Communications</i> , 2017 , 8, 835	17.4	64
223	Tipping Point for Expansion of Layered Aluminosilicates in Weakly Polar Solvents: Supercritical CO. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	29
222	Transmutation effects on long-term Cs retention in phyllosilicate minerals from first principles. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 27007-27014	3.6	4
221	Reply to Comments on Radiation-Damage Resistance in Phyllosilicate Minerals from First Principles and Implications for Radiocesium and Strontium Retention in Soils (Clays and Clay Minerals, 2017, 65, 371-375)	2.1	2
220	Impact of Ti Incorporation on Hydroxylation and Wetting of Fe3O4. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 19288-19295	3.8	8
219	First-Principles Fe L-Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 7613-7618	2.8	22
218	Mechanisms and Rates of U(VI) Reduction by Fe(II) in Homogeneous Aqueous Solution and the Role of U(V) Disproportionation. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 6603-6613	2.8	13
217	Electron Transfer Pathways Facilitating U(VI) Reduction by Fe(II) on Al- vs Fe-Oxides. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 19887-19903	3.8	13
216	Transitions in Al Coordination during Gibbsite Crystallization Using High-Field 27Al and 23Na MAS NMR Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 27555-27562	3.8	33
215	A thermodynamic model for the solubility of HfO2(am) in the aqueous K + IHCO3 IICO32 III OH IIH2O system. <i>Radiochimica Acta</i> , 2017 , 105, 637-647	1.9	1
214	Fast Synthesis of Gibbsite Nanoplates and Process Optimization using Box-Behnken Experimental Design. <i>Crystal Growth and Design</i> , 2017 , 17, 6801-6808	3.5	37
213	Redox potentials in the decaheme cytochrome MtrF: Poisson-Boltzmann vs. molecular dynamics simulations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E10028	11.5	2
212	Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone. <i>Environmental Science & Environmental Scienc</i>	10.3	26
211	Trends in mica-mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 7537-7542	11.5	39

(2015-2017)

210	Probing size-dependent electrokinetics of hematite aggregates. <i>Journal of Colloid and Interface Science</i> , 2017 , 488, 218-224	9.3	8
209	Analysis of X-ray adsorption edges: L edge of FeCl. <i>Journal of Chemical Physics</i> , 2017 , 147, 224306	3.9	12
208	Origin of 6-fold coordinated aluminum at (010)-type pyrophyllite edges. <i>AIP Advances</i> , 2017 , 7, 055211	1.5	6
207	Hematite(001)-liquid water interface from hybrid density functional-based molecular dynamics. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 394001	1.8	17
206	Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 193, 160-175	5.5	28
205	The origin of facet selectivity and alignment in anatase TiO nanoparticles in electrolyte solutions: implications for oriented attachment in metal oxides. <i>Nanoscale</i> , 2016 , 8, 19714-19725	7.7	37
204	Adsorption and diffusion of atomic oxygen and sulfur at pristine and doped Ni surfaces with implications for stress corrosion cracking. <i>Corrosion Science</i> , 2016 , 113, 26-30	6.8	11
203	In Situ Natural Abundance O and Mg NMR Investigation of Aqueous Mg(OH) Dissolution in the Presence of Supercritical CO. <i>Environmental Science & Environmental Science & Envir</i>	10.3	5
202	Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles. <i>Scientific Reports</i> , 2016 , 6, 30969	4.9	23
201	Issues concerning the determination of solubility products of sparingly soluble crystalline solids: solubility of HfO2(cr). <i>Radiochimica Acta</i> , 2016 , 104, 583-592	1.9	3
200	An X-ray magnetic circular dichroism (XMCD) study of Fe ordering in a synthetic MgAl2O4-Fe3O4 (spinel-magnetite) solid-solution series: Implications for magnetic properties and cation site ordering. <i>American Mineralogist</i> , 2016 , 101, 1373-1388	2.9	7
199	Fast Interconversion of Hydrogen Bonding at the Hematite (001)-Liquid Water Interface. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1155-60	6.4	30
198	Radiation-Damage Resistance in Phyllosilicate Minerals from First Principles and Implications for Radiocesium and Strontium Retention in Soils. <i>Clays and Clay Minerals</i> , 2016 , 64, 108-114	2.1	6
197	Molecular Simulation of Cesium Adsorption at the Basal Surface of Phyllosilicate Minerals. <i>Clays and Clay Minerals</i> , 2016 , 64, 389-400	2.1	23
196	An in situ XAS study of ferric iron hydrolysis and precipitation in the presence of perchlorate, nitrate, chloride and sulfate. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 177, 150-169	5.5	21
195	Geochemical Kinetics via Computational Chemistry 2016 , 375-414		1
194	Intermediate coupling for core-level excited states: Consequences for X-Ray absorption spectroscopy. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2015 , 200, 174-180	1.7	12
193	Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide. <i>Langmuir</i> , 2015 , 31, 7533-43	4	36

192	Multiscale model of metal alloy oxidation at grain boundaries. <i>Journal of Chemical Physics</i> , 2015 , 142, 214114	3.9	7
191	Iron Atom Exchange between Hematite and Aqueous Fe(II). <i>Environmental Science &</i> Technology, 2015 , 49, 8479-86	10.3	69
190	Low temperature, non-stoichiometric oxygen-isotope exchange coupled to Fe(II) goethite interactions. <i>Geochimica Et Cosmochimica Acta</i> , 2015 , 160, 38-54	5.5	22
189	Ab Initio Modeling of Bulk and Intragranular Diffusion in Ni Alloys. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1618-23	6.4	20
188	Role of hydration forces in the properties of electrolyte solutions in the bulk and at interfaces. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1753, 38		1
187	Modeling selective intergranular oxidation of binary alloys. <i>Journal of Chemical Physics</i> , 2015 , 142, 0147	70,4 9	2
186	Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. <i>Science</i> , 2015 , 347, 1473-6	33.3	160
185	Ab initio modeling of Fe(II) adsorption and interfacial electron transfer at goethite (FeOOH) surfaces. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 14518-31	3.6	48
184	Proton Dynamics on Goethite Nanoparticles and Coupling to Electron Transport. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 1715-24	6.4	13
183	Computational Molecular Simulation of the Oxidative Adsorption of Ferrous Iron at the Hematite (001) Water Interface. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 9242-9252	3.8	25
182	Potentiometric and electrokinetic signatures of iron(II) interactions with (伊Fe2O3. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 26264-9	3.6	3
181	Dynamics of Magnesite Formation at Low Temperature and High pCO2 in Aqueous Solution. <i>Environmental Science & Environmental S</i>	10.3	16
180	Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. Journal of the Royal Society Interface, 2015 , 12, 20141117	4.1	146
179	Spontaneous water oxidation at hematite (Fe2O3) crystal faces. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 1550-9	9.5	29
178	Capturing ultrafast photoinduced local structural distortions of BiFeO3. Scientific Reports, 2015, 5, 150	98 .9	18
177	Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation. <i>Biophysical Journal</i> , 2015 , 109, 2614-2624	2.9	12
176	Characterizing mineralogy and redox reactivity in potential host rocks for a UK geological disposal facility. <i>Mineralogical Magazine</i> , 2015 , 79, 1353-1367	1.7	5
175	Heterogeneous growth of cadmium and cobalt carbonate phases at the 101 (4 calcite surface. <i>Chemical Geology</i> , 2015 , 397, 24-36	4.2	14

174 Charge Transport at Ti-Doped Hematite (001)/Aqueous Interfaces. Chemistry of Materials, 2015, 27, 16653.6673 23

173	Atom exchange between aqueous Fe(II) and structural Fe in clay minerals. <i>Environmental Science</i> & amp; Technology, 2015 , 49, 2786-95	10.3	30
172	Molecular Dynamics Study of Fe(II) Adsorption, Electron Exchange, and Mobility at Goethite (FeOOH) Surfaces. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 3111-3123	3.8	51
171	Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 611-6	11.5	136
170	Fe(II)-catalyzed recrystallization of goethite revisited. <i>Environmental Science & Environmental Scien</i>	10.3	114
169	A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. <i>Environmental Microbiology Reports</i> , 2014 , 6, 776-85	3.7	130
168	Automated high-pressure titration system with in situ infrared spectroscopic detection. <i>Review of Scientific Instruments</i> , 2014 , 85, 044102	1.7	29
167	Insights into the crystal chemistry of Earth materials rendered by electron density distributions: Pauling rules revisited. <i>American Mineralogist</i> , 2014 , 99, 1071-1084	2.9	16
166	Possible dynamically gated conductance along heme wires in bacterial multiheme cytochromes. Journal of Physical Chemistry B, 2014 , 118, 8505-12	3.4	1
165	In situ study of COland HD partitioning between Na-montmorillonite and variably wet supercritical carbon dioxide. <i>Langmuir</i> , 2014 , 30, 6120-8	4	82
164	Energetics of spinels in the Fe-Ti-O system at the nanoscale. <i>ChemPhysChem</i> , 2014 , 15, 3655-62	3.2	6
163	Electron transport in pure and substituted iron oxyhydroxides by small-polaron migration. <i>Journal of Chemical Physics</i> , 2014 , 140, 234701	3.9	34
162	Kinetics and mechanisms of cadmium carbonate heteroepitaxial growth at the calcite surface. <i>Geochimica Et Cosmochimica Acta</i> , 2014 , 134, 221-233	5.5	21
161	Pauling bond strength, bond length and electron density distribution. <i>Physics and Chemistry of Minerals</i> , 2014 , 41, 17-25	1.6	11
160	Surface potentials of (001), (012), (113) hematite (⊞e2O3) crystal faces in aqueous solution. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 13911-21	3.6	63
159	Clay Hydration/dehydration in Dry to Water-saturated Supercritical CO2: Implications for Caprock Integrity. <i>Energy Procedia</i> , 2013 , 37, 5443-5448	2.3	36
158	Mesoscale Phase-Field Modeling of Charge Transport in Nanocomposite Electrodes for Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 28-40	3.8	17
157	Near-infrared spectroscopic investigation of water in supercritical CO2 and the effect of CaCl2. Fluid Phase Equilibria, 2013, 338, 155-163	2.5	28

156	CO2 sorption to subsingle hydration layer montmorillonite clay studied by excess sorption and neutron diffraction measurements. <i>Environmental Science & Environmental Science</i>	10.3	83
155	Li-Ion Batteries: Oxygen Vacancies and Ordering of d-levels Control Voltage Suppression in Oxide Cathodes: the Case of Spinel LiNi0.5Mn1.5O4-[[Adv. Funct. Mater. 44/2013]). <i>Advanced Functional Materials</i> , 2013 , 23, 5454-5454	15.6	2
154	Bonded radii and the contraction of the electron density of the oxygen atom by bonded interactions. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 1632-40	2.8	26
153	Fe(3-x)Ti(x)O4 nanoparticles as tunable probes of microbial metal oxidation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8896-907	16.4	36
152	Oxygen Vacancies and Ordering of d-levels Control Voltage Suppression in Oxide Cathodes: the Case of Spinel LiNi0.5Mn1.5O4-\(\partial Advanced Functional Materials, \mathbb{2013}\), 23, 5530-5535	15.6	55
151	Effect of surface site interactions on potentiometric titration of hematite (年e2O3) crystal faces. Journal of Colloid and Interface Science, 2013 , 391, 125-34	9.3	35
150	Second Harmonic Generation Studies of Fe(II) Interactions with Hematite (Fe2O3). <i>Journal of Physical Chemistry C</i> , 2013 , 117, 4040-4047	3.8	17
149	Electron Exchange and Conduction in Nontronite from First-Principles. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 2032-2040	3.8	36
148	Reaction of U(VI) with titanium-substituted magnetite: influence of Ti on U(IV) speciation. <i>Environmental Science & Environmental Science & Environme</i>	10.3	28
147	Insights into the Mechanism of Fe(II) Adsorption and Oxidation at Fe©lay Mineral Surfaces from First-Principles Calculations. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 22880-22886	3.8	44
146	Comparative reactivity study of forsterite and antigorite in wet supercritical CO2 by in situ infrared spectroscopy. <i>International Journal of Greenhouse Gas Control</i> , 2013 , 18, 246-255	4.2	39
145	Forsterite [Mg2SiO4)] carbonation in wet supercritical CO2: an in situ high-pressure X-ray diffraction study. <i>Environmental Science & Environmental S</i>	10.3	63
144	U(VI) sorption and reduction kinetics on the magnetite (111) surface. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 3821-30	10.3	71
143	Kinetic Monte Carlo Study of Ambipolar Lithium Ion and Electron P olaron Diffusion into Nanostructured TiO2. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2076-2081	6.4	36
142	In situ infrared spectroscopic study of brucite carbonation in dry to water-saturated supercritical carbon dioxide. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 4768-77	2.8	50
141	In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide. <i>Langmuir</i> , 2012 , 28, 7125-8	4	107
140	Controls on soluble Pu concentrations in PuO2/magnetite suspensions. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	5
139	Electron small polarons and their mobility in iron (oxyhydr)oxide nanoparticles. <i>Science</i> , 2012 , 337, 1200	933.3	136

(2011-2012)

138	Reaction of water-saturated supercritical CO2 with forsterite: Evidence for magnesite formation at low temperatures. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 91, 271-282	5.5	81
137	Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	49
136	Thermodynamics of the magnetite-ulv pinel (Fe3O4-Fe2TiO4) solid solution. <i>American Mineralogist</i> , 2012 , 97, 1330-1338	2.9	36
135	Oxide melt solution calorimetry of Fe2+-bearing oxides and application to the magnetites aghemite (Fe3O4Be8/3O4) system. <i>American Mineralogist</i> , 2012 , 97, 164-175	2.9	22
134	Charge and Ion Transport in NiO and Aspects of Ni Oxidation from First Principles. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 1948-1954	3.8	53
133	Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective. <i>Biochemical Society Transactions</i> , 2012 , 40, 1261-7	5.1	103
132	Synthesis and properties of titanomagnetite (Fe(3-x)Ti(x)O4) nanoparticles: a tunable solid-state Fe(II/III) redox system. <i>Journal of Colloid and Interface Science</i> , 2012 , 387, 24-38	9.3	65
131	In situ X-ray diffraction study of Na+ saturated montmorillonite exposed to variably wet super critical CO2. <i>Environmental Science & Environmental Sc</i>	10.3	82
130	Molecular structure and free energy landscape for electron transport in the decahaem cytochrome MtrF. <i>Biochemical Society Transactions</i> , 2012 , 40, 1198-203	5.1	32
129	Metal oxidation kinetics and the transition from thin to thick films. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14534-9	3.6	47
128	Thermodynamics of electron flow in the bacterial deca-heme cytochrome MtrF. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9868-71	16.4	68
127	Identification and Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1. <i>Frontiers in Microbiology</i> , 2012 , 3, 37	5.7	130
126	Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1. <i>Frontiers in Microbiology</i> , 2012 , 3, 50	5.7	141
125	The effect of pH and time on the extractability and speciation of uranium(VI) sorbed to SiO2. <i>Environmental Science & amp; Technology</i> , 2012 , 46, 6604-11	10.3	32
124	Force-Field Development and Molecular Dynamics of [NiFe] Hydrogenase. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 2103-14	6.4	19
123	Epitaxial Fe3 \mathbb{B} TixO4 films from magnetite to ulv \mathbb{B} pinel by pulsed laser deposition. <i>Physical Review B</i> , 2011 , 84,	3.3	13
122	The role of H2O in the carbonation of forsterite in supercritical CO2. <i>International Journal of Greenhouse Gas Control</i> , 2011 , 5, 1081-1092	4.2	84
121	In situ infrared spectroscopic study of forsterite carbonation in wet supercritical CO2. Environmental Science & amp; Technology, 2011 , 45, 6204-10	10.3	127

120	Inner-Helmholtz potential development at the hematite (Fe2O3) (0 0 1) surface. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 4113-4124	5.5	33
119	Thioarsenides: a case for long-range Lewis acidBase-directed van der Waals interactions. <i>Physics and Chemistry of Minerals</i> , 2011 , 38, 267-291	1.6	10
118	Crystallographic controls on uranyl binding at the quartz/water interface. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 7845-51	3.6	12
117	Electrostatic potential of specific mineral faces. <i>Langmuir</i> , 2011 , 27, 7986-90	4	28
116	Ab initio study of lithium transition metal fluorophosphate cathodes for rechargeable batteries. Journal of Materials Chemistry, 2011 , 21, 12054		18
115	Multiscale Simulations of Li Ion Conductivity in Solid Electrolyte. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2352-2356	6.4	19
114	Charge Localization and Transport in Lithiated Olivine Phosphate Materials. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 25001-25006	3.8	22
113	Heterogeneous reduction of PuOlwith Fe(II): importance of the Fe(III) reaction product. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	35
112	Lithium diffusion in Li4Ti5O12 at high temperatures. <i>Journal of Power Sources</i> , 2011 , 196, 2211-2220	8.9	50
111	Computational methods for intramolecular electron transfer in a ferrous-ferric iron complex. <i>Journal of Colloid and Interface Science</i> , 2011 , 361, 293-306	9.3	10
110	Oxidation of H2S by coadsorbed oxygen on the ECr2O3(0001) surface. Surface Science, 2011 , 605, 555-5	63 .8	9
109	Interfacial reactivity of radionuclides: emerging paradigms from molecular-level observations. <i>Mineralogical Magazine</i> , 2011 , 75, 2379-2391	1.7	16
108	A high-pressure atomic force microscope for imaging in supercritical carbon dioxide. <i>Review of Scientific Instruments</i> , 2011 , 82, 043709	1.7	18
107	Trapping of Holes and Excitons in Scintillators: CsI and \${rm LaX}_{3}\$ (\${rm X}={rm Cl}\$, Br). <i>IEEE Transactions on Nuclear Science</i> , 2010 , 57, 2303-2308	1.7	13
106	Molecular Dynamics Simulation of the AgCl/Electrolyte Interfacial Capacity. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 10019-10026	3.8	18
105	Bond paths and van der Waals interactions in orpiment, As2S3. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 6550-7	2.8	25
104	Mechanism of Li+/Electron Conductivity in Rutile and Anatase TiO2 Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 20277-20283	3.8	68
103	Metal Carbonation of Forsterite in Supercritical CO2 and H2O Using Solid State 29Si, 13C NMR Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4126-4134	3.8	79

(2009-2010)

102	Size Effects on Li+/Electron Conductivity in TiO2 Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1967-1972	6.4	33
101	Influence of dynamical conditions on the reduction of U(VI) at the magnetite-solution interface. <i>Environmental Science & Environmental Science & Envi</i>	10.3	100
100	Technetium incorporation into hematite (alpha-Fe2O3). <i>Environmental Science & Emp; Technology</i> , 2010 , 44, 5855-61	10.3	43
99	Molecular Dynamics Study of the Electrical Double Layer at Silver Chloride Electrolyte Interfaces. Journal of Physical Chemistry C, 2010 , 114, 8905-8916	3.8	26
98	Structure and oxidation state of hematite surfaces reacted with aqueous Fe(II) at acidic and neutral pH. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 1498-1512	5.5	68
97	Structure, charge distribution, and electron hopping dynamics in magnetite (Fe3O4) (100) surfaces from first principles. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 4234-4248	5.5	53
96	Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. <i>Water Research</i> , 2010 , 44, 4505-16	12.5	275
95	Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(II). <i>Environmental Science & Environmental &</i>	10.3	97
94	Computer Simulation of the Phase Stabilities of Lithiated TiO2 Polymorphs. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 19096-19107	3.8	22
93	PuPO4(cr, hyd.) Solubility Product and Pu3+ Complexes with Phosphate and Ethylenediaminetetraacetic Acid. <i>Journal of Solution Chemistry</i> , 2010 , 39, 778-807	1.8	11
92	Nonlinear response of the surface electrostatic potential formed at metal oxide/electrolyte interfaces. A Monte Carlo simulation study. <i>Journal of Colloid and Interface Science</i> , 2010 , 341, 143-52	9.3	13
91	Transition path sampling of water exchange rates and mechanisms around aqueous ions. <i>Journal of Chemical Physics</i> , 2009 , 131, 114512	3.9	27
90	Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. <i>Journal of Power Sources</i> , 2009 , 192, 588-598	8.9	717
89	Long-Range Electron Transfer across CytochromeHematite (日中203) Interfaces <i>Journal of Physical Chemistry C</i> , 2009 , 113, 2096-2103	3.8	20
88	Bond-valence constraints on liquid water structure. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 1847-57	2.8	19
87	Origin of two time-scale regimes in potentiometric titration of metal oxides. A replica kinetic Monte Carlo study. <i>Langmuir</i> , 2009 , 25, 6841-8	4	8
86	Effect of Chemical Lithium Insertion into Rutile TiO2 Nanorods. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14567-14574	3.8	51
85	Role of directed van der Waals bonded interactions in the determination of the structures of molecular arsenate solids. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 736-49	2.8	24

84	Computer simulation of the light yield nonlinearity of inorganic scintillators. <i>Journal of Applied Physics</i> , 2009 , 105, 114915	2.5	40
83	Dynamics of Coupled Lithium/Electron Diffusion in TiO2 Polymorphs. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20998-21007	3.8	44
82	Combined 6,7Li NMR and Molecular Dynamics Study of Li Diffusion in Li2TiO3. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20108-20116	3.8	91
81	The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. <i>Environmental Microbiology Reports</i> , 2009 , 1, 220-7	3.7	236
80	Kinetic Monte Carlo Model of Scintillation Mechanisms in CsI and CsI(Tl). <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 1251-1258	1.7	28
79	Linked reactivity at mineral-water interfaces through bulk crystal conduction. <i>Science</i> , 2008 , 320, 218-23	233.3	277
78	Spectroscopic characterization of extracellular polymeric substances from Escherichia coli and Serratia marcescens: suppression using sub-inhibitory concentrations of bismuth thiols. <i>Biomacromolecules</i> , 2008 , 9, 3079-89	6.9	94
77	Experimental bond critical point and local energy density properties determined for Mn-O, Fe-O, and Co-O bonded interactions for tephroite, Mn2SiO4, fayalite, Fe2SiO4, and Co2SiO4 olivine and selected organic metal complexes: comparison with properties calculated for non-transition and	2.8	32
76	Shared and closed-shell O-O interactions in silicates. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 3693-9	2.8	41
75	A Shell Model for Atomistic Simulation of Charge Transfer in Titania. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 7678-7688	3.8	46
74	Kinetics of reduction of Fe(III) complexes by outer membrane cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 6746-55	4.8	77
73	A spectroscopic study of the effect of ligand complexation on the reduction of uranium(VI) by anthraquinone-2,6-disulfonate (AH2DS). <i>Radiochimica Acta</i> , 2008 , 96, 599-605	1.9	6
72	Simple kinetic Monte Carlo models for dissolution pitting induced by crystal defects. <i>Journal of Chemical Physics</i> , 2008 , 129, 204106	3.9	39
71	Environmental Mobility of Pu(IV) in the Presence of Ethylenediaminetetraacetic Acid: Myth or Reality?. <i>Journal of Solution Chemistry</i> , 2008 , 37, 957-986	1.8	17
70	Thermodynamic Model for ThO2(am) Solubility in Alkaline Silica Solutions. <i>Journal of Solution Chemistry</i> , 2008 , 37, 1725-1746	1.8	11
69	Bismuth dimercaptopropanol (BisBAL) inhibits the expression of extracellular polysaccharides and proteins by Brevundimonas diminuta: implications for membrane microfiltration. <i>Biotechnology and Bioengineering</i> , 2008 , 99, 634-43	4.9	51
68	Structure and Charge Hopping Dynamics in Green Rust. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 1141	43.18142	2 3 48
67	Molecular Dynamics Characterization of Rutile-Anatase Interfaces. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 9290-9298	3.8	58

(2006-2007)

66	between bond length, bond critical point properties, local energy densities, and bonded interactions. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 1923-31	3.4	26
65	Molecular Computational Investigation of Electron-Transfer Kinetics Across Cytochromellon Oxide Interfaces. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 11363-11375	3.8	59
64	Mechanisms of electron transfer in two decaheme cytochromes from a metal-reducing bacterium. Journal of Physical Chemistry B, 2007 , 111, 12857-64	3.4	49
63	Potential protonation sites in the Al2SiO5 polymorphs based on polarized FTIR spectroscopy and properties of the electron density distribution. <i>Physics and Chemistry of Minerals</i> , 2007 , 34, 295-306	1.6	5
62	Chromium(III) Hydroxide Solubility in the Aqueous K+-H+-OHECO2-HCO B -CO 2B -H2O System: A Thermodynamic Model. <i>Journal of Solution Chemistry</i> , 2007 , 36, 1261-1285	1.8	36
61	Kinetic Monte Carlo model of charge transport in hematite (alpha-Fe(2)O(3)). <i>Journal of Chemical Physics</i> , 2007 , 127, 124706	3.9	56
60	Electron tunneling properties of outer-membrane decaheme cytochromes from Shewanella oneidensis. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 543-555	5.5	52
59	Electron transfer in environmental systems: a frontier for theoretical chemistry. <i>Theoretical Chemistry Accounts</i> , 2006 , 116, 124-136	1.9	54
58	Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 11358-63	11.5	1359
57	Electronic coupling between heme electron-transfer centers and its decay with distance depends strongly on relative orientation. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15582-8	3.4	42
56	Sulfide Mineral Surfaces. Reviews in Mineralogy and Geochemistry, 2006, 61, 505-556	7.1	23
55	Reactivity of Sulfide Mineral Surfaces. <i>Reviews in Mineralogy and Geochemistry</i> , 2006 , 61, 557-607	7.1	46
54	Si-O bonded interactions in silicate crystals and molecules: a comparison. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 12678-83	2.8	13
53	Bond length and local energy density property connections for non-transition-metal oxide-bonded interactions. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 12259-66	2.8	31
52	Defect distribution and dissolution morphologies on low-index surfaces of Equartz. <i>Geochimica Et Cosmochimica Acta</i> , 2006 , 70, 1113-1127	5.5	25
51	Computer simulation of electron transfer at hematite surfaces. <i>Geochimica Et Cosmochimica Acta</i> , 2006 , 70, 1888-1903	5.5	71
50	Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects. <i>Geochimica Et Cosmochimica Acta</i> , 2006 , 70, 4057-4071	5.5	60
49	10. Reactivity of Sulfide Mineral Surfaces 2006 , 557-608		3

48	Kinetics of triscarbonato uranyl reduction by aqueous ferrous iron: a theoretical study. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 9691-701	2.8	34
47	Charge transfer in FeO: a combined molecular-dynamics and ab initio study. <i>Journal of Chemical Physics</i> , 2005 , 123, 224712	3.9	37
46	Electron density distributions calculated for the nickel sulfides millerite, vaesite, and heazlewoodite and nickel metal: a case for the importance of ni-ni bond paths for electron transport. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 21788-95	3.4	39
45	Charge transport in metal oxides: a theoretical study of hematite alpha-Fe2O3. <i>Journal of Chemical Physics</i> , 2005 , 122, 144305	3.9	253
44	Experimental and theoretical bond critical point properties for model electron density distributions for earth materials. <i>Physics and Chemistry of Minerals</i> , 2005 , 32, 114-125	1.6	11
43	A mapping of the electron localization function for earth materials. <i>Physics and Chemistry of Minerals</i> , 2005 , 32, 208-221	1.6	14
42	Electron density distribution and bond critical point properties for forsterite, Mg2 SiO4, determined with synchrotron single crystal X-ray diffraction data. <i>Physics and Chemistry of Minerals</i> , 2005 , 32, 301-313	1.6	52
41	Cell adhesion of Shewanella oneidensisto iron oxide minerals: Effect of different single crystal faces. <i>Geochemical Transactions</i> , 2005 , 6, 1	3	26
40	Effects of compositional defects on small polaron hopping in micas. <i>Journal of Chemical Physics</i> , 2005 , 122, 244709	3.9	20
39	Reorganization energy associated with small polaron mobility in iron oxide. <i>Journal of Chemical Physics</i> , 2004 , 120, 7050-4	3.9	44
38	Molecular dynamics investigation of ferrous-ferric electron transfer in a hydrolyzing aqueous solution: calculation of the pH dependence of the diabatic transfer barrier and the potential of mean force. <i>Journal of Chemical Physics</i> , 2004 , 120, 7607-15	3.9	34
37	Adatom Fe(III) on the hematite surface: Observation of a key reactive surface species. <i>Geochemical Transactions</i> , 2004 , 5, 1	3	42
36	Reaction of hydroquinone with hematite; II. Calculated electron-transfer rates and comparison to the reductive dissolution rate. <i>Journal of Colloid and Interface Science</i> , 2004 , 274, 442-50	9.3	21
35	A Connection between Empirical Bond Strength and the Localization of the Electron Density at the Bond Critical Points of the SiO Bonds in Silicates. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 7643-7645	2.8	32
34	Aspects of Aqueous Iron and Manganese (II/III) Self-Exchange Electron Transfer Reactions. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 5242-5248	2.8	25
33	Self-Exchange Electron Transfer Kinetics and Reduction Potentials for Anthraquinone Disulfonate. Journal of Physical Chemistry A, 2004 , 108, 3292-3303	2.8	42
32	Bond-valence methods for pKa prediction: critical reanalysis and a new approach. <i>Geochimica Et Cosmochimica Acta</i> , 2004 , 68, 2025-2042	5.5	105
31	Potential docking sites and positions of hydrogen in high-pressure silicates. <i>American Mineralogist</i> , 2003 , 88, 1452-1459	2.9	22

(2001-2003)

30	Ab initio investigation of the structures of NaOH hydrates and their Na+ and OHEcordination polyhedra. <i>American Mineralogist</i> , 2003 , 88, 436-449	2.9	11
29	A physical basis for Pauling's definition of bond strength. <i>Physics and Chemistry of Minerals</i> , 2003 , 30, 317-320	1.6	17
28	Nonlocal bacterial electron transfer to hematite surfaces. <i>Geochimica Et Cosmochimica Acta</i> , 2003 , 67, 1081-1087	5.5	89
27	Characterization of the structure and the surface reactivity of a marcasite thin film. <i>Geochimica Et Cosmochimica Acta</i> , 2003 , 67, 807-812	5.5	6
26	Proximity effects on semiconducting mineral surfaces II:: Distance dependence of indirect interactions. <i>Geochimica Et Cosmochimica Acta</i> , 2003 , 67, 941-953	5.5	35
25	Metal island growth and dynamics on molybdenite surfaces. <i>Geochimica Et Cosmochimica Acta</i> , 2003 , 67, 923-934	5.5	24
24	The structure of hematite (Fe2O3) (001) surfaces in aqueous media: scanning tunneling microscopy and resonant tunneling calculations of coexisting O and Fe terminations. <i>Geochimica Et Cosmochimica Acta</i> , 2003 , 67, 985-1000	5.5	121
23	Surface structure effects on direct reduction of iron oxides by Shewanella oneidensis. <i>Geochimica Et Cosmochimica Acta</i> , 2003 , 67, 4489-4503	5.5	68
22	An ab initio model of electron transport in hematite (Fe2O3) basal planes. <i>Journal of Chemical Physics</i> , 2003 , 118, 6455-6466	3.9	247
21	Charge transport in micas: The kinetics of FeII/III electron transfer in the octahedral sheet. <i>Journal of Chemical Physics</i> , 2003 , 119, 9207-9218	3.9	37
20	Ab Initio Determination of Edge Surface Structures for Dioctahedral 2:1 Phyllosilicates: Implications for Acid-Base Reactivity. <i>Clays and Clay Minerals</i> , 2003 , 51, 359-371	2.1	113
19	A comparison of procrystal and ab initio model representations of the electron-density distributions of minerals. <i>Physics and Chemistry of Minerals</i> , 2002 , 29, 369-385	1.6	41
18	Trivalent Ion Hydrolysis Reactions II: Analysis of Electron Density Distributions in Metal®xygen Bonds. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 8133-8138	2.8	18
17	Outer-sphere electron transfer kinetics of metal ion oxidation by molecular oxygen. <i>Geochimica Et Cosmochimica Acta</i> , 2002 , 66, 4223-4233	5.5	58
16	Step edges on galena (100): Probing the basis for defect driven surface reactivity at the atomic scale. <i>American Mineralogist</i> , 2001 , 86, 862-870	2.9	15
15	A Computational Quantum Chemical Study of the Bonded Interactions in Earth Materials and Structurally and Chemically Related Molecules. <i>Reviews in Mineralogy and Geochemistry</i> , 2001 , 42, 345-3	871 ¹	21
14	Structures and energies of AlOOH and FeOOH polymorphs from plane wave pseudopotential calculations. <i>American Mineralogist</i> , 2001 , 86, 312-317	2.9	41
13	Structure and Reactivity of Semiconducting Mineral Surfaces: Convergence of Molecular Modeling and Experiment. <i>Reviews in Mineralogy and Geochemistry</i> , 2001 , 42, 199-271	7.1	23

12	The proximity effect on semiconducting mineral surfaces: a new aspect of mineral surface reactivity and surface complexation theory?. <i>Geochimica Et Cosmochimica Acta</i> , 2001 , 65, 2641-2649	5.5	105
11	The Cs/K exchange in muscovite interlayers: An Ab Initio treatment. <i>Clays and Clay Minerals</i> , 2001 , 49, 500-513	2.1	31
10	Surface defects and self-diffusion on pyrite {100}: An ultra-high vacuum scanning tunneling microscopy and theoretical modeling study. <i>American Mineralogist</i> , 2000 , 85, 1428-1436	2.9	23
9	Model Structures and Electron Density Distributions for the Silica Polymorph Coesite at Pressure: An Assessment of OO Bonded Interactions. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 10534-10542	3.4	27
8	Ab Initio Calculation of Homogeneous Outer Sphere Electron Transfer Rates: Application to M(OH2)63+/2+ Redox Couples. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 6718-6725	2.8	58
7	SiO bonded interactions in coesite: a comparison of crystalline, molecular and experimental electron density distributions. <i>Physics and Chemistry of Minerals</i> , 1999 , 26, 264-272	1.6	13
6	The interaction of pyrite {100} surfaces with O2 and H2O: Fundamental oxidation mechanisms. <i>American Mineralogist</i> , 1999 , 84, 1549-1561	2.9	108
5	Atomically resolved electronic structure of pyrite {100} surfaces; an experimental and theoretical investigation with implications for reactivity. <i>American Mineralogist</i> , 1999 , 84, 1535-1548	2.9	98
4	An embedding approach for the calculation of STM images: Method development and application to galena (PbS). <i>Journal of Chemical Physics</i> , 1997 , 107, 7537-7542	3.9	18
3	The effect of Cr alloying on defect migration at Ni grain boundaries. Journal of Materials Science,1	4.3	O
2	Comments on the Theory of Complex XPS Spectra: Extracting Chemical Information from the Fe 3p XPS of Fe Oxides. <i>Comments on Inorganic Chemistry</i> ,1-25	3.9	2
1	Particle-Based Crystallization. ACS Symposium Series,37-73	0.4	1