
Silvia Mora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6450114/publications.pdf Version: 2024-02-01

SULVIA ΜΟΡΑ

#	Article	IF	CITATIONS
1	Hypoxia-induced HIF1α activation regulates small extracellular vesicle release in human embryonic kidney cells. Scientific Reports, 2022, 12, 1443.	1.6	16
2	Allostatic hypermetabolic response in PGC1α/β heterozygote mouse despite mitochondrial defects. FASEB Journal, 2021, 35, e21752.	0.2	2
3	Comparative and functional analysis of plasma membrane-derived extracellular vesicles from obese vs. nonobese women. Clinical Nutrition, 2020, 39, 1067-1076.	2.3	16
4	Extracellular Vesicles from Hypoxic Adipocytes and Obese Subjects Reduce Insulin‣timulated Glucose Uptake. Molecular Nutrition and Food Research, 2018, 62, 1700917.	1.5	57
5	Cbl downregulation increases RBP4 expression in adipocytes of female mice. Journal of Endocrinology, 2018, 236, 29-41.	1.2	7
6	Glucose-dependent insulinotropic polypeptide promotes lipid deposition in subcutaneous adipocytes in obese type 2 diabetes patients: a maladaptive response. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E224-E233.	1.8	41
7	The Rab11 Effector Protein FIP1 Regulates Adiponectin Trafficking and Secretion. PLoS ONE, 2013, 8, e74687.	1.1	23
8	Identification of Novel Type 2 Diabetes Candidate Genes Involved in the Crosstalk between the Mitochondrial and the Insulin Signaling Systems. PLoS Genetics, 2012, 8, e1003046.	1.5	23
9	Insulin Signaling Regulates Fatty Acid Catabolism at the Level of CoA Activation. PLoS Genetics, 2012, 8, e1002478.	1.5	93
10	Mitochondrial dysfunction in insulin resistance: differential contributions of chronic insulin and saturated fatty acid exposure in muscle cells. Bioscience Reports, 2012, 32, 465-478.	1.1	44
11	Evaluation of macrophage plasticity in brown and white adipose tissue. Cellular Immunology, 2011, 271, 124-133.	1.4	24
12	High insulin and saturated fatty acid exposure cause mitochondrial dysfunction via distinct mechanisms. FASEB Journal, 2011, 25, lb84.	0.2	0
13	Interactive Changes between Macrophages and Adipocytes. Vaccine Journal, 2010, 17, 651-659.	3.2	59
14	Adiponectin and leptin are secreted through distinct trafficking pathways in adipocytes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 99-108.	1.8	62
15	Activation of the Cbl insulin signaling pathway in cardiac muscle; Dysregulation in obesity and diabetes. Biochemical and Biophysical Research Communications, 2006, 342, 751-757.	1.0	36
16	Intracellular Trafficking and Secretion of Adiponectin Is Dependent on GGA-coated Vesicles. Journal of Biological Chemistry, 2006, 281, 7253-7259.	1.6	62
17	Atypical protein kinase C (PKCζ/λ) is a convergent downstream target of the insulin-stimulated phosphatidylinositol 3-kinase and TC10 signaling pathways. Journal of Cell Biology, 2004, 164, 279-290.	2.3	82
18	The Insulin Receptor Catalyzes the Tyrosine Phosphorylation of Caveolin-1. Journal of Biological Chemistry, 2002, 277, 30153-30158.	1.6	104

SILVIA MORA

#	Article	IF	CITATIONS
19	NCS-1 Inhibits Insulin-stimulated GLUT4 Translocation in 3T3L1 Adipocytes through a Phosphatidylinositol 4-Kinase-dependent Pathway. Journal of Biological Chemistry, 2002, 277, 27494-27500.	1.6	28
20	An adipocentric view of signaling and intracellular trafficking. Diabetes/Metabolism Research and Reviews, 2002, 18, 345-356.	1.7	147
21	Rab4 affects both recycling and degradative endosomal trafficking. FEBS Letters, 2001, 495, 21-30.	1.3	141
22	VAMP3 Null Mice Display Normal Constitutive, Insulin- and Exercise-Regulated Vesicle Trafficking. Molecular and Cellular Biology, 2001, 21, 1573-1580.	1.1	87
23	Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. Journal of Cell Biology, 2001, 154, 829-840.	2.3	152
24	The MEF2A and MEF2D Isoforms Are Differentially Regulated in Muscle and Adipose Tissue during States of Insulin Deficiency*. Endocrinology, 2001, 142, 1999-2004.	1.4	34
25	Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance. Journal of Clinical Investigation, 2001, 107, 1311-1318.	3.9	98
26	The MEF2A and MEF2D Isoforms Are Differentially Regulated in Muscle and Adipose Tissue during States of Insulin Deficiency. Endocrinology, 2001, 142, 1999-2004.	1.4	7
27	CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature, 2000, 407, 202-207.	13.7	621
28	The MEF2A Isoform Is Required for Striated Muscle-specific Expression of the Insulin-responsive GLUT4 Glucose Transporter. Journal of Biological Chemistry, 2000, 275, 16323-16328.	1.6	97
29	Heterologous expression of rab4 reduces glucose transport and GLUT4 abundance at the cell surface in oocytes. Biochemical Journal, 1997, 324, 455-459.	1.7	22
30	Chronic High-Fat Feeding and Middle-Aging Reduce in an Additive Fashion Glut4 Expression in Skeletal Muscle and Adipose Tissue. Biochemical and Biophysical Research Communications, 1997, 235, 89-93.	1.0	27
31	Expression and Insulin-regulated Distribution of Caveolin in Skeletal Muscle. Journal of Biological Chemistry, 1996, 271, 8133-8139.	1.6	55
32	P-42: Characterization of intracellular GLUT4 membrane populations in the muscle fiber. Caveolin does not colocalize with GLUT4 in intracellular membranes. Experimental and Clinical Endocrinology and Diabetes, 1996, 104, 107-108.	0.6	0
33	Insulin and insulin-like growth factor I (IGF-I) stimulate GLUT4 glucose transporter translocation in <i>Xenopus</i> oocytes. Biochemical Journal, 1995, 311, 59-65.	1.7	21