Daisuke Kawahara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6450030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stepwise deep neural network (stepwise-net) for head and neck auto-segmentation on CT images. Computers in Biology and Medicine, 2022, 143, 105295.	7.0	6
2	Deep learningâ€based auto segmentation using generative adversarial network on magnetic resonance images obtained for head and neck cancer patients. Journal of Applied Clinical Medical Physics, 2022, 23, e13579.	1.9	9
3	Development of a radiomics and machine learning model for predicting occult cervical lymph node metastasis in patients with tongue cancer. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2022, 134, 93-101.	0.4	11
4	Improved cellular automata model shows that indirect apoptotic cell death due to vascular damage enhances the local control of tumors by single fraction high-dose irradiation. Biomedical Physics and Engineering Express, 2022, 8, 015028.	1.2	4
5	A prediction model for pathological findings after neoadjuvant chemoradiotherapy for resectable locally advanced esophageal squamous cell carcinoma based on endoscopic images using deep learning. British Journal of Radiology, 2022, 95, 20210934.	2.2	3
6	Image synthesis with deep convolutional generative adversarial networks for material decomposition in dual-energy CT from a kilovoltage CT. Computers in Biology and Medicine, 2021, 128, 104111.	7.0	15
7	Calculated relative biological effectiveness (RBE) for initial DNA double-strand breaks (DSB) from flattening filter and flattening filter-free 6 MV X-ray fields. BJR Open, 2021, 3, 20200072.	0.6	2
8	Image synthesis of monoenergetic CT image in dualâ€energy CT using kilovoltage CT with deep convolutional generative adversarial networks. Journal of Applied Clinical Medical Physics, 2021, 22, 184-192.	1.9	16
9	T1-weighted and T2-weighted MRI image synthesis with convolutional generative adversarial networks. Reports of Practical Oncology and Radiotherapy, 2021, 26, 35-42.	0.6	20
10	Reduction of margin to compensate the respiratory tumor motion by the analysis of dosimetric internal target volume in lung SBRT with nonuniform volume prescription method. Medical Physics, 2021, 48, 3200-3207.	3.0	2
11	Predicting the Local Response of Esophageal Squamous Cell Carcinoma to Neoadjuvant Chemoradiotherapy by Radiomics with a Machine Learning Method Using 18F-FDG PET Images. Diagnostics, 2021, 11, 1049.	2.6	12
12	Prediction of radiation pneumonitis after definitive radiotherapy for locally advanced non-small cell lung cancer using multi-region radiomics analysis. Scientific Reports, 2021, 11, 16232.	3.3	19
13	A prediction model for degree of differentiation for resectable locally advanced esophageal squamous cell carcinoma based on CT images using radiomics and machine-learning. British Journal of Radiology, 2021, 94, 20210525.	2.2	13
14	Detecting MLC modeling errors using radiomicsâ€based machine learning in patientâ€specific QA with an EPID for intensityâ€modulated radiation therapy. Medical Physics, 2021, 48, 991-1002.	3.0	26
15	Potential benefits of volumetric modulated arc therapy to reduce the incidence of ≥ grade 2 radiation pneumonitis in radiotherapy for locally advanced non-small cell lung cancer patients. Japanese Journal of Clinical Oncology, 2021, 51, 1729-1735.	1.3	5
16	Formulation of objective indices to quantify machine failure risk analysis for interruptions in radiotherapy. Journal of Applied Clinical Medical Physics, 2021, 22, 165-173.	1.9	3
17	Efficacy and tolerability of preoperative chemoradiotherapy with S-1 alone for locally advanced rectal cancer. Journal of Radiation Research, 2021, 62, 300-308.	1.6	2
18	Predictive gamma passing rate for threeâ€dimensional dose verification with finite detector elements via improved dose uncertainty potential accumulation model. Medical Physics, 2020, 47, 1349-1356.	3.0	9

DAISUKE KAWAHARA

#	Article	IF	CITATIONS
19	A Single Institution's Experience of Definitive Radiotherapy Using Volumetric-modulated Arc Therapy for Hypopharyngeal Cancers. Anticancer Research, 2020, 40, 4183-4190.	1.1	1
20	Radiobiological effects of the interruption time with Monte Carlo Simulation on multiple fields in photon beams. Journal of Applied Clinical Medical Physics, 2020, 21, 288-294.	1.9	4
21	Dose compensation based on biological effectiveness due to interruption time for photon radiation therapy. British Journal of Radiology, 2020, 93, 20200125.	2.2	9
22	Long-term outcomes of induction chemotherapy followed by chemoradiotherapy using volumetric-modulated arc therapy as an organ preservation approach in patients with stage IVA-B oropharyngeal or hypopharyngeal cancers. Journal of Radiation Research, 2020, 61, 554-562.	1.6	1
23	Synthesized effective atomic numbers for commercially available dual-energy CT. Reports of Practical Oncology and Radiotherapy, 2020, 25, 692-697.	0.6	6
24	Assessment of biological dosimetric margin for stereotactic body radiation therapy. Journal of Applied Clinical Medical Physics, 2020, 21, 31-41.	1.9	3
25	Optimization of irradiation interval for fractionated stereotactic radiosurgery by a cellular automata model with reoxygenation effects. Physics in Medicine and Biology, 2020, 65, 085008.	3.0	6
26	Development of a CT number calibration audit phantom in photon radiation therapy: A pilot study. Medical Physics, 2020, 47, 1509-1522.	3.0	11
27	Evaluation of metal artefact techniques with same contrast scale for different commercially available dual-energy computed tomography scanners. Physical and Engineering Sciences in Medicine, 2020, 43, 539-546.	2.4	1
28	Analysis of cardiac toxicity after definitive chemoradiotherapy for esophageal cancer using a biological dose–volume histogram. Journal of Radiation Research, 2020, 61, 298-306.	1.6	8
29	Predicting the Local Response of Metastatic Brain Tumor to Gamma Knife Radiosurgery by Radiomics With a Machine Learning Method. Frontiers in Oncology, 2020, 10, 569461.	2.8	20
30	Evaluation of optimization workflow using custom-made planning through predicted dose distribution for head and neck tumor treatment. Physica Medica, 2020, 80, 167-174.	0.7	8
31	A prediction model for pathological findings after neoadjuvant chemoradiotherapy for resectable locally advanced esophageal cancer based on PET images using radiomics and machine-learning Journal of Clinical Oncology, 2020, 38, 456-456.	1.6	1
32	Evaluation of raw-data-based and calculated electron density for contrast media with a dual-energy CT technique. Reports of Practical Oncology and Radiotherapy, 2019, 24, 499-506.	0.6	4
33	Metal artifact reduction techniques for single energy CT and dual-energy CT with various metal materials. BJR Open, 2019, 1, bjro.20180045.	0.6	8
34	A novel risk analysis of clinical reference dosimetry based on failure modes and effects analysis. Physica Medica, 2019, 58, 59-65.	0.7	4
35	Improving automatic contrast agent extraction system using monochromatic CT number. Australasian Physical and Engineering Sciences in Medicine, 2019, 42, 819-826.	1.3	0
36	Concurrent chemoradiotherapy for locally advanced squamous cell carcinoma of the cervix in a uterus didelphys with vaginal septum. Journal of Contemporary Brachytherapy, 2019, 11, 180-188.	0.9	2

DAISUKE KAWAHARA

#	Article	IF	CITATIONS
37	Photon and electron backscatter dose and energy spectrum analysis around Lipiodol using flattened and unflattened beams. Journal of Applied Clinical Medical Physics, 2019, 20, 178-183.	1.9	3
38	Tolerance levels of mass density for CT number calibration in photon radiation therapy. Journal of Applied Clinical Medical Physics, 2019, 20, 45-52.	1.9	8
39	Biological dose-enhancement analysis with Monte Carlo simulation for Lipiodol for photon beams. Reports of Practical Oncology and Radiotherapy, 2019, 24, 681-687.	0.6	1
40	Accuracy of the raw-data-based effective atomic numbers and monochromatic CT numbers for contrast medium with a dual-energy CT technique. British Journal of Radiology, 2018, 91, 20170524.	2.2	8
41	Effect of secondary electron generation on dose enhancement in Lipiodol with and without a flattening filter. Journal of Applied Clinical Medical Physics, 2018, 19, 211-217.	1.9	2
42	A novel verification method using a plastic scintillator imagining system for assessment of gantry sag in radiotherapy. Medical Physics, 2018, 45, 2411-2424.	3.0	7
43	Energy spectrum and dose enhancement due to the depth of the Lipiodol position using flattened and unflattened beams. Reports of Practical Oncology and Radiotherapy, 2018, 23, 50-56.	0.6	4
44	Interfractional diaphragm changes during breath-holding in stereotactic body radiotherapy for liver cancer. Reports of Practical Oncology and Radiotherapy, 2018, 23, 84-90.	0.6	12
45	Relative biological effectiveness study of Lipiodol based on microdosimetric-kinetic model. Physica Medica, 2018, 46, 89-95.	0.7	10
46	Tolerance levels of <scp>CT</scp> number to electron density table for photon beam in radiotherapy treatment planning system. Journal of Applied Clinical Medical Physics, 2018, 19, 271-275.	1.9	15
47	Effect of dose-delivery time for flattened and flattening filter-free photon beams based on microdosimetric kinetic model. PLoS ONE, 2018, 13, e0206673.	2.5	10
48	Automatic contrast medium extraction system using electron density data with dual-energy CT. British Journal of Radiology, 2018, 91, 20180396.	2.2	4
49	Dosimetric impact of Lipiodol in stereotactic body radiation therapy on liver after transâ€arterial chemoembolization. Medical Physics, 2017, 44, 342-348.	3.0	15
50	Marginal prescription equivalent to the isocenter prescription in lung stereotactic body radiotherapy: preliminary study for Japan Clinical Oncology Group trial (JCOG1408). Journal of Radiation Research, 2017, 58, 149-154.	1.6	20
51	Split-VMAT technique to control the expiratory breath-hold time in liver stereotactic body radiation therapy. Physica Medica, 2017, 40, 17-23.	0.7	7
52	Evaluation of beam modeling for small fields using a flattening filter-free beam. Radiological Physics and Technology, 2017, 10, 33-40.	1.9	0
53	Absorbed dose and image quality of Varian TrueBeam CBCT compared with OBI CBCT. Physica Medica, 2016, 32, 1628-1633.	0.7	11
54	Availability of applying diaphragm matching with the breath-holding technique in stereotactic body radiation therapy for liver tumors. Physica Medica, 2016, 32, 557-561.	0.7	13

#	Article	IF	CITATIONS
55	Impact of reduction of flux overlap region on kilovoltage cone-beam computed tomography image quality and patients' exposure dose. Reports of Practical Oncology and Radiotherapy, 2016, 21, 460-465.	0.6	0