Bo Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6449729/publications.pdf

Version: 2024-02-01

147801 175258 3,155 90 31 52 citations h-index g-index papers 91 91 91 4515 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Carbon Quantum Dot Implanted Graphite Carbon Nitride Nanotubes: Excellent Charge Separation and Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 5765-5771.	13.8	372
2	Surface Facet of CuFeO ₂ Nanocatalyst: A Key Parameter for H ₂ O ₂ Activation in Fenton-Like Reaction and Organic Pollutant Degradation. Environmental Science & Environmental Science & Technology, 2018, 52, 6518-6525.	10.0	150
3	Selective Adsorption of Gd ³⁺ on a Magnetically Retrievable Imprinted Chitosan/Carbon Nanotube Composite with High Capacity. ACS Applied Materials & Interfaces, 2015, 7, 21047-21055.	8.0	114
4	Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors. Journal of Power Sources, 2017, 365, 380-388.	7.8	100
5	Enabling Prominent Highâ€Rate and Cycle Performances in One Lithium–Sulfur Battery: Designing Permselective Gateways for Li ⁺ Transportation in Holey NT/S Cathodes. Advanced Materials, 2015, 27, 3774-3781.	21.0	92
6	Understanding CO ₂ Capture Mechanisms in Aqueous Monoethanolamine via First Principles Simulations. Journal of Physical Chemistry Letters, 2011, 2, 522-526.	4.6	91
7	On the Mechanism of the Improved Operation Voltage of Rhombohedral Nickel Hexacyanoferrate as Cathodes for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33619-33625.	8.0	89
8	One-pot synthesis of a novel hierarchical Co(II)-doped TiO2 nanostructure: Toward highly active and durable catalyst of peroxymonosulfate activation for degradation of antibiotics and other organic pollutants. Chemical Engineering Journal, 2019, 368, 377-389.	12.7	88
9	Ultrafast and high-capacity adsorption of Gd(III) onto inorganic phosphorous acid modified mesoporous SBA-15. Chemical Engineering Journal, 2017, 313, 197-206.	12.7	81
10	Facile Synthesis of Hierarchically Porous N/P Codoped Carbon with Simultaneously High-Level Heteroatom-Doping and Moderate Porosity for High-Performance Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 2019, 7, 5717-5726.	6.7	79
11	Carbon Quantum Dot Implanted Graphite Carbon Nitride Nanotubes: Excellent Charge Separation and Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2018, 130, 5867-5873.	2.0	69
12	Au nanoparticles embedded on urchin-like TiO 2 nanosphere: An efficient catalyst for dyes degradation and 4-nitrophenol reduction. Materials and Design, 2017, 121, 167-175.	7.0	65
13	Solvothermal synthesis of Mn Fe3â^O4 nanoparticles with interesting physicochemical characteristics and good catalytic degradation activity. Materials and Design, 2016, 97, 341-348.	7.0	62
14	Architecturing CoTiO3 overlayer on nanosheets-assembled hierarchical TiO2 nanospheres as a highly active and robust catalyst for peroxymonosulfate activation and metronidazole degradation. Chemical Engineering Journal, 2020, 392, 123819.	12.7	58
15	Density Functional Theory Study of Water Dissociative Chemisorption on the Fe ₃ O ₄ (111) Surface. Journal of Physical Chemistry C, 2010, 114, 21405-21410.	3.1	56
16	Anchoring Lithium Polysulfides via Affinitive Interactions: Electrostatic Attraction, Hydrogen Bonding, or in Parallel?. Journal of Physical Chemistry C, 2015, 119, 20495-20502.	3.1	53
17	On the Mechanisms of SiO ₂ Thin-Film Growth by the Full Atomic Layer Deposition Process Using Bis(<i>t</i> -butylamino)silane on the Hydroxylated SiO ₂ (001) Surface. Journal of Physical Chemistry C, 2012, 116, 947-952.	3.1	50
18	Three-dimensionally porous graphene: A high-performance adsorbent for removal of albumin-bonded bilirubin. Colloids and Surfaces B: Biointerfaces, 2017, 149, 146-153.	5.0	50

#	Article	IF	CITATIONS
19	Hierarchical flower-like Co ₂ TiO ₄ nanosheets with unique structural and compositional advantages to boost peroxymonosulfate activation for degradation of organic pollutants. Journal of Materials Chemistry A, 2020, 8, 20953-20962.	10.3	50
20	Waterâ€Soluble Crossâ€Linking Functional Binder for Lowâ€Cost and Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2104858.	14.9	50
21	Fabricating yolk–shell structured CoTiO3@Co3O4 nanoreactor via a simple self-template method toward high-performance peroxymonosulfate activation and organic pollutant degradation. Applied Surface Science, 2021, 536, 147787.	6.1	49
22	Mechanistic Study on Water Gas Shift Reaction on the Fe ₃ O ₄ (111) Reconstructed Surface. Journal of Physical Chemistry C, 2015, 119, 28934-28945.	3.1	44
23	A hyperbranched conjugated Schiff base polymer network: a potential negative electrode for flexible thin film batteries. Chemical Communications, 2016, 52, 3000-3002.	4.1	40
24	A study on the catalytic hydrogenation of N-ethylcarbazole on the mesoporous Pd/MoO3 catalyst. International Journal of Hydrogen Energy, 2017, 42, 25942-25950.	7.1	39
25	Controllable fabrication of 2D and 3D porous graphene architectures using identical thermally exfoliated graphene oxides as precursors and their application as supercapacitor electrodes. Microporous and Mesoporous Materials, 2017, 237, 228-236.	4.4	39
26	Effect of extracellular polymer substances on the tetracycline removal during coagulation process. Bioresource Technology, 2020, 309, 123316.	9.6	39
27	Marine redox stratification during the early <scp>C</scp> ambrian (ca. 529â€509 Ma) and its control on the development of organicâ€rich shales in <scp>Y</scp> angtze <scp>P</scp> latform. Geochemistry, Geophysics, Geosystems, 2017, 18, 2354-2369.	2.5	34
28	Effective coating of crosslinked polyethyleneimine on elastic spongy monolith for highly efficient batch and continuous flow adsorption of Pb(II) and acidic red 18. Chemical Engineering Journal, 2020, 391, 123610.	12.7	34
29	Cu Nanoparticles Supported on Oxygen-Rich Boron Nitride for the Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2018, 1, 6692-6700.	5.0	33
30	N/P Codoped Porous Carbon-Coated Graphene Nanohybrid as a High-Performance Electrode for Supercapacitors. ACS Applied Nano Materials, 2018, 1, 6742-6751.	5.0	33
31	Hydrous titania nanosheets constructed hierarchical hollow microspheres as a highly efficient dual-use decontaminant for elimination of heavy metal ions and organic pollutants. Chemical Engineering Journal, 2020, 381, 122638.	12.7	33
32	Instability of Zinc Hexacyanoferrate Electrode in an Aqueous Environment: Redoxâ€Induced Phase Transition, Compound Dissolution, and Inhibition. ChemElectroChem, 2016, 3, 798-804.	3.4	32
33	Partial-Redox-Promoted Mn Cycling of Mn(II)-Doped Heterogeneous Catalyst for Efficient H ₂ O ₂ -Mediated Oxidation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 371-380.	8.0	31
34	On the CO ₂ Capture in Water-Free Monoethanolamine Solution: An ab Initio Molecular Dynamics Study. Journal of Physical Chemistry B, 2013, 117, 5971-5977.	2.6	30
35	A first principles study of water dissociation on small copper clusters. Physical Chemistry Chemical Physics, 2010, 12, 9845.	2.8	28
36	Density functional theory study on the full ALD process of silicon nitride thin film deposition via BDEAS or BTBAS and NH ₃ . Physical Chemistry Chemical Physics, 2014, 16, 18501.	2.8	28

#	Article	IF	Citations
37	Carboxyl-functionalized lotus seedpod: A highly efficient and reusable agricultural waste-based adsorbent for removal of toxic Pb2+ ions from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 391-401.	4.7	28
38	High-performance lithium/sulfur batteries by decorating CMK-3/S cathodes with DNA. Journal of Materials Chemistry A, 2015, 3, 7241-7247.	10.3	27
39	Ultrafine SnO2 aggregates in interior of porous carbon nanotubes as high-performance anode materials of lithium-ion batteries. Materials Today Energy, 2019, 12, 303-310.	4.7	26
40	Encapsulating tin oxide nanoparticles into holey carbon nanotubes by melt infiltration for superior lithium and sodium ion storage. Journal of Power Sources, 2020, 449, 227564.	7.8	26
41	Composition-engineered LaCoO3-based monolithic catalysts for easily operational and robust peroxymonosulfate activation. Chemical Engineering Journal, 2021, 424, 130574.	12.7	26
42	Molecular mechanisms of interaction between enzymes and Maillard reaction products formed from thermal hydrolysis pretreatment of waste activated sludge. Water Research, 2021, 206, 117777.	11.3	26
43	First-Principles Study of Hydrogenation of Ethylene on a H _{<i>x</i>} MoO ₃ (010) Surface. Journal of Physical Chemistry C, 2012, 116, 24630-24638.	3.1	25
44	Remarkable performance of magnetized chitosan-decorated lignocellulose fiber towards biosorptive removal of acidic azo colorant from aqueous environment. Reactive and Functional Polymers, 2016, 100, 97-106.	4.1	25
45	Toward High Activity and Durability: An Oxygen-Rich Boron Nitride-Supported Au Nanoparticles for 4-Nitrophenol Hydrogenation. Journal of Physical Chemistry C, 2019, 123, 10389-10397.	3.1	25
46	Facile one-pot synthesis of magnetic nitrogen-doped porous carbon for high-performance bilirubin removal from BSA-rich solution. RSC Advances, 2017, 7, 2081-2091.	3.6	24
47	Synthesis of MnSiO3 decorated hollow mesoporous silica spheres and its promising application in environmental remediation. Microporous and Mesoporous Materials, 2017, 241, 409-417.	4.4	23
48	Postsynthetic incorporation of catalytically inert Al into Co3O4 for peroxymonosulfate activation and insight into the boosted catalytic performance. Chemical Engineering Journal, 2021, 426, 131292.	12.7	22
49	Influence of Charge on the Reactivity of Supported Heterogeneous Transition Metal Catalysts. ACS Catalysis, 2015, 5, 4592-4597.	11.2	21
50	Simple and Controllable Synthesis of High-Quality MnTiO3 Nanodiscs and Their Application as A Highly Efficient Catalyst for H2O2-Mediated Oxidative Degradation. ACS Applied Nano Materials, 2018, 1, 2727-2738.	5.0	21
51	Unique electron reservoir properties of manganese in Mn(II)-doped CeO2 for reversible electron transfer and enhanced Fenton-like catalytic performance. Applied Surface Science, 2020, 502, 144295.	6.1	20
52	On the Mechanisms of Carbon Formation Reaction on Ni(111) Surface. Journal of Physical Chemistry C, 2012, 116, 16522-16531.	3.1	19
53	Utilizing cobalt-doped materials as heterogeneous catalysts to activate peroxymonosulfate for organic pollutant degradation: a critical review. Environmental Science: Water Research and Technology, 0, , .	2.4	19
54	Crosslinked poly(ionic liquid) anchored with organic probe as a new promising platform for organic solvent-free recognition, quantification, and selective removal of heavy metal ion. Chemical Engineering Journal, 2018, 346, 458-465.	12.7	17

#	Article	IF	Citations
55	lonic liquid-grafted probe for selective detection and individual identification of different metal ions in 100% aqueous solutions. Sensors and Actuators B: Chemical, 2018, 259, 411-419.	7.8	17
56	Density Function Theory Study of Copper Agglomeration on the WN(001) Surface. Journal of Physical Chemistry C, 2007, 111, 9403-9406.	3.1	16
57	Firstâ€Principles Simulations of Conditions of Enhanced Adhesion Between Copper and TaN(111) Surfaces Using a Variety of Metallic Glue Materials. Angewandte Chemie - International Edition, 2010, 49, 148-152.	13.8	16
58	Design of efficient mono-aminosilane precursors for atomic layer deposition of SiO ₂ thin films. RSC Advances, 2017, 7, 22672-22678.	3.6	16
59	Transition-Metal Ion-Doped Flower-Like Titania Nanospheres as Nonlight-Driven Catalysts for Organic Dye Degradation with Enhanced Performances. ACS Omega, 2018, 3, 17724-17731.	3.5	16
60	Significant enhancement of photo-Fenton degradation of ofloxacin over Fe-Dis@Sep due to highly dispersed FeC6 with electron deficiency. Science of the Total Environment, 2020, 723, 138144.	8.0	16
61	Constructing novel hyper-crosslinked conjugated polymers through molecular expansion for enhanced gas adsorption performance. Journal of Hazardous Materials, 2022, 426, 127850.	12.4	16
62	Doping phosphorus into Co3O4: A new promising pathway to boost the catalytic activity for peroxymonosulfate activation. Applied Surface Science, 2022, 574, 151632.	6.1	15
63	On the relative stability of cobalt―and nickelâ€based amidinate complexes against β―migration. International Journal of Quantum Chemistry, 2009, 109, 756-763.	2.0	14
64	The roles of active species in photo-decomposition of organic compounds by microwave powered electrodeless discharge lamps. Journal of Environmental Sciences, 2015, 33, 60-68.	6.1	14
65	A first-principles investigation of the influence of polyanionic boron doping on the stability and electrochemical behavior of Na3V2(PO4)3. Journal of Molecular Modeling, 2019, 25, 96.	1.8	14
66	A single molecular sensor for selective and differential colorimetric/ratiometric detection of Cu2+ and Pd2+ in 100% aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 237, 118365.	3.9	14
67	Ab Initio Molecular Dynamics Simulation on the Aggregation of a Cu Monolayer on a WN(001) Surface. Journal of Physical Chemistry C, 2008, 112, 9798-9802.	3.1	13
68	First-Principles Study of a Full Cycle of Atomic Layer Deposition of SiO ₂ Thin Films with Di(<i>sec</i> -butylamino)silane and Ozone. Journal of Physical Chemistry C, 0, , 130911145338002.	3.1	13
69	Palladium nanoparticles uniformly and firmly supported on hierarchical flower-like TiO2 nanospheres as a highly active and reusable catalyst for detoxification of Cr(VI)-contaminated water. Applied Nanoscience (Switzerland), 2020, 10, 359-369.	3.1	13
70	A single polymer chemosensor for differential determination of Hg2+ and Cu2+ in pure aqueous media without mutual interference. Materials Today Communications, 2019, 19, 148-156.	1.9	11
71	Computational Criteria for Evaluating Polysulfide Cohesion, Solvation, and Stabilization: Approach for Screening Effective Anchoring Substrates. Journal of Physical Chemistry C, 2017, 121, 308-314.	3.1	10
72	Facile and scalable synthesis of hierarchically porous graphene architecture for hydrogen storage and high-rate supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 17675-17681.	2.2	10

#	ARTICLE IF	CITATIONS
	Chemisorption of small fullerenes <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/iviath/iviathiviL"><mml:mrow><mml:msub>C<mml:mi>n</mml:mi></mml:msub></mml:mrow></mml:math>	
73	display= inline > <mml:mrow><mml:msub>C<mml:mi>n</mml:mi></mml:msub><td>row></td></mml:mrow>	row>
73	XIIIIIS.IIIIII— IICCP.//www.wo.org/1770/Macii/MaciiMc	
		_