Carsten Geisler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6449611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nature Immunology, 2010, 11, 344-349.	14.5	493
2	The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Scientific Reports, 2015, 5, 16148.	3.3	269
3	The Vitamin D Receptor and T Cell Function. Frontiers in Immunology, 2013, 4, 148.	4.8	250
4	Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood, 2011, 118, 5891-5900.	1.4	237
5	The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology, 2007, 121, 216-226.	4.4	167
6	Regulation and Function of the CD3γ DxxxLL Motif: A Binding Site for Adaptor Protein-1 and Adaptor Protein-2 in Vitro. Journal of Cell Biology, 1997, 138, 271-281.	5.2	158
7	IL-23 and TH17-mediated inflammation in human allergic contact dermatitis. Journal of Allergy and Clinical Immunology, 2009, 123, 486-492.e1.	2.9	140
8	STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. Cell Cycle, 2013, 12, 1939-1947.	2.6	123
9	Regulatory T cells and immunodeficiency in mycosis fungoides and Sézary syndrome. Leukemia, 2012, 26, 424-432.	7.2	105
10	Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin. British Journal of Dermatology, 2014, 170, 609-616.	1.5	105
11	Vitamin D-binding protein controls T cell responses to vitamin D. BMC Immunology, 2014, 15, 35.	2.2	100
12	Malignant Cutaneous T-Cell Lymphoma Cells Express IL-17 Utilizing the Jak3/Stat3 Signaling Pathway. Journal of Investigative Dermatology, 2011, 131, 1331-1338.	0.7	94
13	Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood, 2019, 134, 1072-1083.	1.4	94
14	Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma. Blood, 2016, 127, 1287-1296.	1.4	86
15	Activated human CD4+ T cells express transporters for both cysteine and cystine. Scientific Reports, 2012, 2, 266.	3.3	85
16	TCR Trafficking in Resting and Stimulated T Cells. Critical Reviews in Immunology, 2004, 24, 67-86.	0.5	81
17	Elucidating the role of interleukin-17F in cutaneous T-cell lymphoma. Blood, 2013, 122, 943-950.	1.4	78
18	Single-cell heterogeneity in Sézary syndrome. Blood Advances, 2018, 2, 2115-2126.	5.2	78

#	Article	IF	CITATIONS
19	Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma. Oncotarget, 2015, 6, 20555-20569.	1.8	78
20	Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells. Scientific Reports, 2017, 7, 14516.	3.3	77
21	Increased Sensitivity to Interferon-α in Psoriatic T Cells. Journal of Investigative Dermatology, 2005, 125, 936-944.	0.7	72
22	Rapid allergenâ€induced interleukinâ€17 and interferonâ€Î³ secretion by skinâ€resident memory CD8 ⁺ T cells. Contact Dermatitis, 2017, 76, 218-227.	1.4	71
23	Enhanced sensitization and elicitation responses caused by mixtures of common fragrance allergens. Contact Dermatitis, 2011, 65, 336-342.	1.4	70
24	Allergic contact dermatitis induces upregulation of identical microRNAs in humans and mice. Contact Dermatitis, 2012, 67, 298-305.	1.4	70
25	IL-1β–Dependent Activation of Dendritic Epidermal T Cells in Contact Hypersensitivity. Journal of Immunology, 2014, 192, 2975-2983.	0.8	69
26	Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins. Blood, 2007, 109, 3325-3332.	1.4	66
27	Bacterial Toxins Fuel Disease Progression in Cutaneous T-Cell Lymphoma. Toxins, 2013, 5, 1402-1421.	3.4	66
28	Vitamin D Up-Regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation in Human CD4+ T Cells. PLoS ONE, 2014, 9, e96695.	2.5	65
29	CD4 ⁺ T cells producing interleukin (IL)â€17, ILâ€22 and interferonâ€ <i>γ</i> are major effector T cells in nickel allergy. Contact Dermatitis, 2013, 68, 339-347.	1.4	64
30	Leucine-based Receptor Sorting Motifs Are Dependent on the Spacing Relative to the Plasma Membrane. Journal of Biological Chemistry, 1998, 273, 21316-21323.	3.4	60
31	Spontaneous interleukin-5 production in cutaneous T-cell lymphoma lines is mediated by constitutively activated Stat3. Blood, 2002, 99, 973-977.	1.4	60
32	Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation. Blood, 2014, 124, 761-770.	1.4	59
33	Role of the T Cell Receptor Ligand Affinity in T Cell Activation by Bacterial Superantigens. Journal of Biological Chemistry, 2001, 276, 33452-33457.	3.4	58
34	Protein Kinase C (PKC)α and PKCÎ, Are the Major PKC Isotypes Involved in TCR Down-Regulation. Journal of Immunology, 2006, 176, 7502-7510.	0.8	57
35	Ectopic expression of B-lymphoid kinase in cutaneous T-cell lymphoma. Blood, 2009, 113, 5896-5904.	1.4	57
36	MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Research, 2014, 34, 7207-17.	1.1	55

#	Article	IF	CITATIONS
37	Molecular Characterization of the Di-leucine-based Internalization Motif of the T Cell Receptor. Journal of Biological Chemistry, 1996, 271, 11441-11448.	3.4	53
38	Constitutive and Ligand-Induced TCR Degradation. Journal of Immunology, 2004, 173, 384-393.	0.8	51
39	THE ROLE OF CASPASE 3 AND BclxLIN THE ACTION OF INTERLEUKIN 7 (IL-7): A SURVIVAL FACTOR IN ACTIVATED HUMAN T CELLS. Cytokine, 1998, 10, 662-668.	3.2	45
40	STAT5 induces miR-21 expression in cutaneous T cell lymphoma. Oncotarget, 2016, 7, 45730-45744.	1.8	45
41	TCRζ is transported to and retained in the Golgi apparatus independently of other TCR chains: implications for TCR assembly. European Journal of Immunology, 1999, 29, 1719-1728.	2.9	44
42	Ligand-Induced TCR Down-Regulation Is Not Dependent on Constitutive TCR Cycling. Journal of Immunology, 2002, 168, 5434-5440.	0.8	43
43	Programmed cell deathâ€10 enhances proliferation and protects malignant T cells from apoptosis. Apmis, 2010, 118, 719-728.	2.0	42
44	Distinct Domains of the CD3-Î ³ Chain Are Involved in Surface Expression and Function of the T Cell Antigen Receptor. Journal of Biological Chemistry, 1995, 270, 4675-4680.	3.4	41
45	The Phosphorylation State of CD3Î ³ Influences T Cell Responsiveness and Controls T Cell Receptor Cycling. Journal of Biological Chemistry, 1998, 273, 24232-24238.	3.4	40
46	A novel xenograft model of cutaneous Tâ€cell lymphoma. Experimental Dermatology, 2010, 19, 1096-1102.	2.9	40
47	Deficient SOCS3 and SHP-1 Expression in Psoriatic T Cells. Journal of Investigative Dermatology, 2010, 130, 1590-1597.	0.7	40
48	T cell activation. Cellular Immunology, 1990, 126, 196-210.	3.0	39
49	Three distinct developmental pathways for adaptive and two IFN-γ-producing γδT subsets in adult thymus. Nature Communications, 2017, 8, 1911.	12.8	38
50	Crossâ€reactivity between methylisothiazolinone, octylisothiazolinone and benzisothiazolinone using a modified local lymph node assay. British Journal of Dermatology, 2017, 176, 176-183.	1.5	38
51	SATB1 in Malignant T Cells. Journal of Investigative Dermatology, 2018, 138, 1805-1815.	0.7	38
52	The Vitamin D Analogue Calcipotriol Reduces the Frequency of <scp>CD</scp> 8 ⁺ <scp>IL</scp> â€17 ⁺ T Cells in Psoriasis Lesions. Scandinavian Journal of Immunology, 2015, 82, 84-91.	2.7	37
53	Vitamin D Counteracts Mycobacterium tuberculosis-Induced Cathelicidin Downregulation in Dendritic Cells and Allows Th1 Differentiation and IFNÎ ³ Secretion. Frontiers in Immunology, 2017, 8, 656.	4.8	37
54	The CD3Î ³ Leucine-Based Receptor-Sorting Motif Is Required for Efficient Ligand-Mediated TCR Down-Regulation. Journal of Immunology, 2002, 168, 4519-4523.	0.8	36

#	Article	IF	CITATIONS
55	Interleukinâ€15â€activated natural killer cells kill autologous osteoclasts via <scp>LFA</scp> â€1, <scp>DNAM</scp> â€1 and <scp>TRAIL</scp> , and inhibit osteoclastâ€mediated bone erosion <i>inÂvitro</i> . Immunology, 2015, 145, 367-379.	4.4	36
56	Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling. European Journal of Immunology, 2002, 32, 616.	2.9	36
57	T Cell Receptor ζ Allows Stable Expression of Receptors Containing the CD3γ Leucine-based Receptor-sorting Motif. Journal of Biological Chemistry, 1998, 273, 26281-26284.	3.4	35
58	Substoichiometric ribose methylations in spliceosomal snRNAs. Organic and Biomolecular Chemistry, 2017, 15, 8872-8876.	2.8	34
59	Immunological, chemical and clinical aspects of exposure to mixtures of contact allergens. Contact Dermatitis, 2017, 77, 133-142.	1.4	34
60	Nickel acts as an adjuvant during cobalt sensitization. Experimental Dermatology, 2015, 24, 229-231.	2.9	33
61	Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis. Oncotarget, 2015, 6, 21853-21864.	1.8	33
62	Mechanisms behind Functional Avidity Maturation in T Cells. Clinical and Developmental Immunology, 2012, 2012, 1-8.	3.3	32
63	Staphylococcal alpha-toxin tilts the balance between malignant and non-malignant CD4 ⁺ T cells in cutaneous T-cell lymphoma. Oncolmmunology, 2019, 8, e1641387.	4.6	32
64	MHC Class II Ligation Induces CD58 (LFA-3)-Mediated Adhesion in Human T Cells. Experimental and Clinical Immunogenetics, 1998, 15, 61-68.	1.2	30
65	Interferon-Alpha Induces Transient Suppressors of Cytokine Signalling Expression in Human T Cells. Experimental and Clinical Immunogenetics, 2001, 18, 80-85.	1.2	30
66	NKG2D-Dependent Activation of Dendritic Epidermal T Cells in Contact Hypersensitivity. Journal of Investigative Dermatology, 2015, 135, 1311-1319.	0.7	30
67	Validation of a diagnostic microRNA classifier in cutaneous T-cell lymphomas. Leukemia and Lymphoma, 2014, 55, 957-958.	1.3	28
68	Epicutaneous exposure to nickel induces nickel allergy in mice via a <scp>MyD88</scp> â€dependent and interleukinâ€1â€dependent pathway. Contact Dermatitis, 2014, 71, 224-232.	1.4	28
69	Epidermal filaggrin deficiency mediates increased systemic T-helper 17 immune response. British Journal of Dermatology, 2016, 175, 706-712.	1.5	28
70	Pathogenic CD8+ Epidermis-Resident Memory T Cells Displace Dendritic Epidermal T Cells in Allergic Dermatitis. Journal of Investigative Dermatology, 2020, 140, 806-815.e5.	0.7	28
71	MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. Cancers, 2020, 12, 1229.	3.7	28
72	IL-15 and IL-17F are differentially regulated and expressed in mycosis fungoides (MF). Cell Cycle, 2014, 13, 1306-1312.	2.6	27

#	Article	IF	CITATIONS
73	Malignant T cells express lymphotoxin α and drive endothelial activation in cutaneous T cell lymphoma. Oncotarget, 2015, 6, 15235-15249.	1.8	27
74	Protein Phosphatase 2A (PP2A) Regulates Interleukin-4-mediated STAT6 Signaling. Journal of Biological Chemistry, 2003, 278, 2787-2791.	3.4	26
75	Cellular dynamics in the draining lymph nodes during sensitization and elicitation phases of contact hypersensitivity. Contact Dermatitis, 2007, 57, 300-308.	1.4	26
76	IFN-α primes T- and NK-cells for IL-15-mediated signaling and cytotoxicity. Molecular Immunology, 2011, 48, 2087-2093.	2.2	26
77	A Response Calculus for Immobilized T Cell Receptor Ligands. Journal of Biological Chemistry, 2001, 276, 49125-49132.	3.4	25
78	Cytokine Profile in Patients with Aseptic Loosening of Total Hip Replacements and Its Relation to Metal Release and Metal Allergy. Journal of Clinical Medicine, 2019, 8, 1259.	2.4	25
79	The combination of IL-21 and IFN-α boosts STAT3 activation, cytotoxicity and experimental tumor therapy. Molecular Immunology, 2009, 46, 812-820.	2.2	24
80	<i>Staphylococcus aureus</i> alpha-toxin inhibits CD8 ⁺ T cell-mediated killing of cancer cells in cutaneous T-cell lymphoma. Oncolmmunology, 2020, 9, 1751561.	4.6	24
81	Staphylococcus aureus enterotoxins induce FOXP3 in neoplastic T cells in Sézary syndrome. Blood Cancer Journal, 2020, 10, 57.	6.2	24
82	Inhibition of succinate dehydrogenase activity impairs human T cell activation and function. Scientific Reports, 2021, 11, 1458.	3.3	24
83	Development of interleukin-17-producing Vγ2+ γδT cells is reduced by ICOS signaling in the thymus. Oncotarget, 2016, 7, 19341-19354.	1.8	24
84	TCR Comodulation of Nonengaged TCR Takes Place by a Protein Kinase C and CD3Î ³ Di-Leucine-Based Motif-Dependent Mechanism. Journal of Immunology, 2003, 171, 3003-3009.	0.8	23
85	γδT cells and inflammatory skin diseases. Immunological Reviews, 2020, 298, 61-73.	6.0	23
86	Recognition of Melanoma-Derived Antigens by CTL: Possible Mechanisms Involved in Down-Regulating Anti-Tumor T-Cell Reactivity. Critical Reviews in Immunology, 1998, 18, 55-63.	0.5	23
87	The role of innate lymphoid cells in healthy and inflamed skin. Immunology Letters, 2016, 179, 25-28.	2.5	22
88	CD8 ⁺ tissueâ€resident memory T cells recruit neutrophils that are essential for flareâ€ups in contact dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 513-524.	5.7	22
89	The Cytoplasmic Tail of FcÎ ³ RIIIAα Is Involved in Signaling by the Low Affinity Receptor for Immunoglobulin G. Journal of Biological Chemistry, 1996, 271, 22815-22822.	3.4	21
90	Vascular endothelial growth factor receptor-3 expression in mycosis fungoides. Leukemia and Lymphoma, 2013, 54, 819-826.	1.3	21

6

#	Article	IF	CITATIONS
91	Macrophages Control the Bioavailability of Vitamin D and Vitamin D-Regulated T Cell Responses. Frontiers in Immunology, 2021, 12, 722806.	4.8	21
92	Increased prevalence of lymphoid tissue inducer cells in the cerebrospinal fluid of patients with early multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1013-1020.	3.0	20
93	Mice with epidermal filaggrin deficiency show increased immune reactivity to nickel. Contact Dermatitis, 2019, 80, 139-148.	1.4	20
94	Bacterial genotoxins induce TÂcell senescence. Cell Reports, 2021, 35, 109220.	6.4	20
95	Structure of the T cell receptor in a TiαVβ2,αVβ8-positive T cell line. European Journal of Immunology, 1994, 24, 1228-1233.	2.9	19
96	A novel BLK-induced tumor model. Tumor Biology, 2017, 39, 101042831771419.	1.8	19
97	An enzyme-linked immunosorbent assay for autoantibodies against the nuclear protein Scl-70. Journal of Immunological Methods, 1985, 80, 211-219.	1.4	18
98	Ceramide-Induced TCR Up-Regulation. Journal of Immunology, 2000, 165, 3065-3072.	0.8	18
99	β2-Adaptin is constitutively de-phosphorylated by serine/threonine protein phosphatase PP2A and phosphorylated by a staurosporine-sensitive kinase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1497, 297-307.	4.1	18
100	Bi-phasic Effect of Interferon (IFN)-α. Journal of Biological Chemistry, 2004, 279, 169-176.	3.4	17
101	TCR Down-Regulation Controls T Cell Homeostasis. Journal of Immunology, 2009, 183, 4994-5005.	0.8	17
102	JAK3 Is Expressed in the Nucleus of Malignant T Cells in Cutaneous T Cell Lymphoma (CTCL). Cancers, 2021, 13, 280.	3.7	17
103	Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. European Journal of Immunology, 2014, 44, 3109-3118.	2.9	16
104	Tumor necrosis factor induces rapid down-regulation of TXNIP in human T cells. Scientific Reports, 2019, 9, 16725.	3.3	16
105	Masking of the CD3γ di-Leucine-based Motif by ζ is Required for Efficient T-Cell Receptor Expression. Traffic, 2004, 5, 672-684.	2.7	15
106	TCR Down-Regulation Controls Virus-Specific CD8+ T Cell Responses. Journal of Immunology, 2008, 181, 7786-7799.	0.8	15
107	Interleukin-26 (IL-26) is a novel anti-microbial peptide produced by T cells in response to staphylococcal enterotoxin. Oncotarget, 2018, 9, 19481-19489.	1.8	15
108	Staphylococcus aureus Induces Signal Transducer and Activator of Transcription 5‒Dependent miR-155 Expression in Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2021, 141, 2449-2458.	0.7	15

#	Article	IF	CITATIONS
109	STAT3 activation and infiltration of eosinophil granulocytes in mycosis fungoides. Anticancer Research, 2014, 34, 5277-86.	1.1	15
110	The major diversification of Vγ1.1 ⁺ and Vγ2 ⁺ thymocytes in mice occurs after commitment to the γδT ell lineage. European Journal of Immunology, 2016, 46, 2363-2375.	2.9	14
111	The role of interleukinâ€ <scp>1β</scp> in the immune response to contact allergens. Contact Dermatitis, 2021, 85, 387-397.	1.4	14
112	Gab2 Is Phosphorylated on Tyrosine upon Interleukin-2/Interleukin-15 Stimulation in Mycosis-fungoides-Derived Tumor T Cells and Associates Inducibly with SHP-2 and Stat5a. Experimental and Clinical Immunogenetics, 2001, 18, 86-95.	1.2	13
113	Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling. European Journal of Immunology, 2002, 32, 616-626.	2.9	13
114	Immune responses to hair dyes containing tolueneâ€2,5â€diamine. British Journal of Dermatology, 2014, 170, 352-359.	1.5	13
115	Characterization of T cell receptor assembly and expression in a Ti γÎ-positive cell line. European Journal of Immunology, 1993, 23, 487-493.	2.9	12
116	<scp>PKC</scp> â€î, exists in an oxidized inactive form in naive human <scp>T</scp> cells. European Journal of Immunology, 2013, 43, 1659-1666.	2.9	12
117	An immune response study of oakmoss absolute and its constituents atranol and chloroatranol. Contact Dermatitis, 2014, 70, 282-290.	1.4	12
118	Malignant T cells activate endothelial cells via IL-17 F. Blood Cancer Journal, 2017, 7, e586-e586.	6.2	12
119	Increased Production of IL-17A-Producing γδT Cells in the Thymus of Filaggrin-Deficient Mice. Frontiers in Immunology, 2018, 9, 988.	4.8	12
120	Fractionation of T cell subsets on Ig anti-Ig columns: Isolation of helper T cells from nonresponder mice, demonstration of antigen-specific T suppressor cells, and selection of CD-3 negative variants of Jurkat T cells. Cellular Immunology, 1989, 119, 327-340.	3.0	10
121	PROTEIN PHOSPHATASE 2A PLAYS A CRITICAL ROLE IN INTERLEUKIN-2-INDUCED β2-INTEGRIN DEPENDENT HOMOTYPIC ADHESION IN HUMAN CD4+T CELL LINES. Cytokine, 1997, 9, 333-339.	3.2	9
122	TCR downâ€regulation boosts Tâ€cellâ€mediated cytotoxicity and protection against poxvirus infections. European Journal of Immunology, 2011, 41, 1948-1957.	2.9	9
123	Vitamin D Inhibits IL-22 Production Through a Repressive Vitamin D Response Element in the il22 Promoter. Frontiers in Immunology, 2021, 12, 715059.	4.8	9
124	The Thioredoxin-Interacting Protein TXNIP Is a Putative Tumour Suppressor in Cutaneous T-Cell Lymphoma. Dermatology, 2021, 237, 283-290.	2.1	8
125	Dendritic Epidermal T Cells in Allergic Contact Dermatitis. Frontiers in Immunology, 2020, 11, 874.	4.8	8
126	MicroRNA-93 Targets p21 and Promotes Proliferation in Mycosis Fungoides T Cells. Dermatology, 2021, 237, 277-282.	2.1	8

#	Article	IF	CITATIONS
127	Impaired Vitamin D Signaling in T Cells From a Family With Hereditary Vitamin D Resistant Rickets. Frontiers in Immunology, 2021, 12, 684015.	4.8	8
128	TCRζ is transported to and retained in the Golgi apparatus independently of other TCR chains: implications for TCR assembly. European Journal of Immunology, 1999, 29, 1719-1728.	2.9	8
129	Normal T and B Cell Responses Against SARS-CoV-2 in a Family With a Non-Functional Vitamin D Receptor: A Case Report. Frontiers in Immunology, 2021, 12, 758154.	4.8	7
130	1351-1357.	2.9	6
131	Reply to "Control of T cell activation by vitamin D― Nature Immunology, 2011, 12, 3-4.	14.5	6
132	Midline 1 controls polarization and migration of murine cytotoxic T cells. Immunity, Inflammation and Disease, 2014, 2, 262-271.	2.7	6
133	Increase in Vitamin D but not Regulatory T Cells following Ultraviolet B Phototherapy of Patients with Atopic Dermatitis. Acta Dermato-Venereologica, 2019, 99, 139-145.	1.3	6
134	VDR, the Vitamin D Receptor. , 2018, , 5907-5914.		6
135	MicroRNA-106b Regulates Expression of the Tumour Suppressors p21 and TXNIP and Promotes Tumour Cell Proliferation in Mycosis Fungoides. Acta Dermato-Venereologica, 2020, 100, adv00270.	1.3	6
136	Amino Acid Substitutions in the Melanoma Antigen Recognized by T Cell 1 Peptide Modulate Cytokine Responses in Melanoma-Specific T Cells. Journal of Immunotherapy, 2000, 23, 405-411.	2.4	5
137	Protein Phosphatase 2A Isotypes Regulate Cell Surface Expression of the T Cell Receptor. Experimental and Clinical Immunogenetics, 2001, 18, 24-33.	1.2	5
138	Low SATB1 Expression Promotes IL-5 and IL-9 Expression in Sézary Syndrome. Journal of Investigative Dermatology, 2020, 140, 713-716.	0.7	5
139	Fine-tuning of T-cell development by the CD3Î ³ di-leucine-based TCR-sorting motif. International Immunology, 2015, 27, 393-404.	4.0	4
140	<scp>MID</scp> 2 can substitute for <scp>MID</scp> 1 and control exocytosis of lytic granules in cytotoxic T cells. Apmis, 2015, 123, 682-687.	2.0	4
141	<scp>IL</scp> â€17A―and <scp>IFN</scp> <i>γ</i> â€Producing T Cells in Healthy Skin. Scandinavian Journal of Immunology, 2016, 83, 297-299.	2.7	4
142	The Expression of IL-21 Is Promoted by MEKK4 in Malignant T Cells and Associated with Increased Progression Risk in Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2016, 136, 866-869.	0.7	4
143	Detection of local inflammation induced by repeated exposure to contact allergens by use of <scp>IVIS S</scp> pectrum <scp>CT</scp> analyses. Contact Dermatitis, 2017, 76, 210-217.	1.4	4
144	Ectopic expression of a novel CD22 splice-variant regulates survival and proliferation in malignant T cells from cutaneous T cell lymphoma (CTCL) patients. Oncotarget, 2015, 6, 14374-14384.	1.8	4

#	Article	IF	CITATIONS
145	Polymorphisms of the T cell receptor CD3Ĩ´and CD3É› chains affect anti-CD3 antibody binding and T cell activation. Molecular Immunology, 2010, 47, 2450-2457.	2.2	3
146	Alloactivated HLA class II-positive T-cell lines induce IL-2 reactivity but lack accessory cell function in mixed leukocyte culture. Human Immunology, 1989, 25, 135-148.	2.4	2
147	Acquired Immunity in Metal Allergy: T Cell Responses. , 2018, , 85-95.		1
148	Epidermal T cell subsets—Effect of age and antigen exposure in humans and mice. Contact Dermatitis, 2021, 84, 375-384.	1.4	1
149	VDR, the Vitamin D Receptor. , 2016, , 1-8.		1
150	Immune Activity and Vitamin D. , 2014, , 37-47.		0
151	Increased prevalence of LTi cells in CSF of patients with early MS. Journal of Neuroimmunology, 2014, 275, 93.	2.3	О
152	416 No difference in UVB induced changes in antigen presenting cells and cytokines between subjects with and without FLG null-mutation. Journal of Investigative Dermatology, 2017, 137, S263.	0.7	0
153	Vitamin D Up-Regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation. , 2018, , 1-21.		О
154	Antibiotics inhibit tumor and disease activity in cutaneous T cell lymphoma. European Journal of Cancer, 2019, 119, S5.	2.8	0
155	Vitamin D Up-regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation. , 2019, , 1261-1280		0