Christophe Drouet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6449508/publications.pdf Version: 2024-02-01

CHRISTORNE DROLLET

#	Article	IF	CITATIONS
1	Further insight on amine-metal reaction in epoxy systems. Surfaces and Interfaces, 2021, 23, 100959.	3.0	3
2	Toward a doxorubicin-loaded bioinspired bone cement for the localized treatment of osteosarcoma. Future Oncology, 2021, 17, 3511-3528.	2.4	6
3	Activated Carbon Fiber Cloth/Biomimetic Apatite: A Dual Drug Delivery System. International Journal of Molecular Sciences, 2021, 22, 12247.	4.1	8
4	First successful stabilization of consolidated amorphous calcium phosphate (ACP) by cold sintering: toward highly-resorbable reactive bioceramics. Journal of Materials Chemistry B, 2020, 8, 629-635.	5.8	15
5	Influence of carbonation on the low-temperature consolidation by Spark Plasma Sintering of carbonated calcium phosphate bioceramics. Ceramics International, 2020, 46, 5799-5810.	4.8	13
6	Brushite (Ca,M)HPO4, 2H2O doping with bioactive ions (MÂ= Mg2+, Sr2+, Zn2+, Cu2+, and Ag+): a new path to functional biomaterials?. Materials Today Chemistry, 2020, 16, 100230.	3.5	25
7	Direct evidence of amine-metal reaction in epoxy systems: An in situ calorimetry study of the interphase formation. Progress in Organic Coatings, 2020, 148, 105769.	3.9	5
8	Bio-inspired apatite particles limit skin penetration of drugs for dermatology applications. Acta Biomaterialia, 2020, 111, 418-428.	8.3	7
9	Mechanism of Calcium Incorporation Inside Sol–Gel Silicate Bioactive Glass and the Advantage of Using Ca(OH) ₂ over Other Calcium Sources. ACS Biomaterials Science and Engineering, 2019, 5, 5906-5915.	5.2	25
10	Bone mineral: new insights into its chemical composition. Scientific Reports, 2019, 9, 8456.	3.3	161
11	Bioinspired crystallization, sensitized luminescence and cytocompatibility of citrate-functionalized Ca-substituted europium phosphate monohydrate nanophosphors. Journal of Colloid and Interface Science, 2019, 538, 174-186.	9.4	11
12	Applied predictive thermodynamics (ThermAP). Part 2. Apatites containing Ni2+, Co2+, Mn2+, or Fe2+ ions. Journal of Chemical Thermodynamics, 2019, 136, 182-189.	2.0	8
13	Nanocrystalline apatites: The fundamental role of water. American Mineralogist, 2018, 103, 550-564.	1.9	43
14	Luminescent biomimetic citrate-coated europium-doped carbonated apatite nanoparticles for use in bioimaging: physico-chemistry and cytocompatibility. RSC Advances, 2018, 8, 2385-2397.	3.6	36
15	Interaction of Folic Acid with Nanocrystalline Apatites and Extension to Methotrexate (Antifolate) in View of Anticancer Applications. Langmuir, 2018, 34, 12036-12048.	3.5	24
16	Consolidation of bone-like apatite bioceramics by spark plasma sintering of amorphous carbonated calcium phosphate at very low temperature. Journal of the European Ceramic Society, 2018, 38, 2098-2109.	5.7	42
17	Quantification of water content by laser induced breakdown spectroscopy on Mars. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 130, 82-100.	2.9	65
18	Protein-free formation of bone-like apatite: New insights into the key role of carbonation. Biomaterials, 2017, 127, 75-88.	11.4	77

CHRISTOPHE DROUET

#	Article	IF	CITATIONS
19	Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Biomaterials, 2017, 140, 138-149.	11.4	55
20	Foam-Based Bionanocomposite Scaffold for Bone Tissue Engineering. Key Engineering Materials, 2017, 758, 145-149.	0.4	0
21	Colloidal Apatite Nanoparticles: Insights on their Interaction with Cells and Artificial Lipid Membranes. Key Engineering Materials, 2016, 720, 95-101.	0.4	2
22	Nanomedicine: Interaction of biomimetic apatite colloidal nanoparticles with human blood components. Colloids and Surfaces B: Biointerfaces, 2016, 145, 87-94.	5.0	17
23	Adsorption of tranexamic acid on hydroxyapatite: Toward the development of biomaterials with local hemostatic activity. Materials Science and Engineering C, 2016, 66, 1-7.	7.3	21
24	Nanocrystalline Apatites: A Versatile Functionalizable Platform for Biomedical Applications for Bone Engineering… and beyond. Key Engineering Materials, 2016, 696, 14-22.	0.4	4
25	Electrodeposition of HAp coatings on Ti6Al4V alloy and its electrochemical behavior in simulated body fluid solution. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 025008.	1.5	13
26	Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5⿲ triphosphate (ATP). Applied Surface Science, 2016, 360, 979-988.	6.1	14
27	Superparamagnetic iron-doped nanocrystalline apatite as a delivery system for doxorubicin. Journal of Materials Chemistry B, 2016, 4, 57-70.	5.8	61
28	Tetracycline-Loaded Biomimetic Apatite: An Adsorption Study. Journal of Physical Chemistry B, 2015, 119, 3014-3024.	2.6	60
29	Electrodeposition and Characterization of Hydroxyapatite on TiN/316LSS. Journal of Nanoscience and Nanotechnology, 2015, 15, 9991-10001.	0.9	10
30	Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5′ monophosphate (AMP). Applied Surface Science, 2015, 353, 165-172.	6.1	19
31	Adsorption of nucleotides on biomimetic apatite: The case of cytidine 5′ monophosphate (CMP). Journal of Colloid and Interface Science, 2015, 456, 132-137.	9.4	15
32	Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations. Journal of Materials Science: Materials in Medicine, 2015, 26, 223.	3.6	14
33	A comprehensive guide to experimental and predicted thermodynamic properties of phosphate apatite minerals in view of applicative purposes. Journal of Chemical Thermodynamics, 2015, 81, 143-159.	2.0	70
34	Novel contributions on luminescent apatite-based colloids intended for medical imaging. Journal of Biomaterials Applications, 2014, 28, 697-707.	2.4	25
35	Energetics of lanthanide-doped calcium phosphate apatite. American Mineralogist, 2014, 99, 2320-2327.	1.9	13
36	Surface properties of biomimetic nanocrystalline apatites; applications in biomaterials. Progress in Crystal Growth and Characterization of Materials, 2014, 60, 63-73.	4.0	80

#	Article	IF	CITATIONS
37	Peroxide-doped apatites: Preparation and effect of synthesis parameters. Powder Technology, 2014, 255, 3-9.	4.2	9
38	Enzyme-functionalized biomimetic apatites: concept and perspectives in view of innovative medical approaches. Journal of Materials Science: Materials in Medicine, 2014, 25, 595-606.	3.6	21
39	Adsorption of DNA on biomimetic apatites: Toward the understanding of the role of bone and tooth mineral on the preservation of ancient DNA. Applied Surface Science, 2014, 292, 867-875.	6.1	48
40	Novel contribution on the diagenetic physicochemical features of bone and teeth minerals, as substrates for ancient DNA typing. Analytical and Bioanalytical Chemistry, 2014, 406, 4691-4704.	3.7	31
41	Study on the stability of suspensions based on biomimetic apatites aimed at biomedical applications. Powder Technology, 2014, 255, 17-22.	4.2	14
42	Characterization of Calcium Phosphates Using Vibrational Spectroscopies. Springer Series in Biomaterials Science and Engineering, 2014, , 229-266.	1.0	37
43	Revisiting carbonate quantification in apatite (bio)minerals: a validated FTIR methodology. Journal of Archaeological Science, 2014, 49, 134-141.	2.4	141
44	Progress on the preparation of nanocrystalline apatites and surface characterization: Overview of fundamental and applied aspects. Progress in Crystal Growth and Characterization of Materials, 2013, 59, 1-46.	4.0	219
45	Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds. BioMed Research International, 2013, 2013, 1-12.	1.9	199
46	Thermodynamic basis for evolution of apatite in calcified tissues. American Mineralogist, 2013, 98, 2037-2045.	1.9	42
47	Synthesis and post-treatments of biomimetic apatites: How working conditions may configure final physico-chemical features. MATEC Web of Conferences, 2013, 7, 04008.	0.2	1
48	Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters. Journal of Materials Science: Materials in Medicine, 2012, 23, 2593-2606.	3.6	125
49	Biomimetic nanocrystalline apatites: Emerging perspectives in cancer diagnosis and treatment. International Journal of Pharmaceutics, 2012, 423, 26-36.	5.2	53
50	Hydroxyapatite coating on titanium by a low energy plasma spraying mini-gun. Surface and Coatings Technology, 2012, 206, 2346-2353.	4.8	60
51	Bioactive Ceramics: Physical Chemistry. , 2011, , 187-221.		39
52	Purification of biomimetic apatite-based hybrid colloids intended for biomedical applications: A dialysis study. Colloids and Surfaces B: Biointerfaces, 2011, 82, 378-384.	5.0	17
53	Medical Potentialities of Biomimetic Apatites through Adsorption, Ionic Substitution, and Mineral/Organic Associations: Three Illustrative Examples. Advanced Engineering Materials, 2010, 12, B224.	3.5	39
54	Biomimetic apatite sintered at very low temperature by spark plasma sintering: Physico-chemistry and microstructure aspects. Acta Biomaterialia, 2010, 6, 577-585.	8.3	91

CHRISTOPHE DROUET

#	Article	IF	CITATIONS
55	Synthesis, characterization and thermochemistry of a Pb-jarosite. Geochimica Et Cosmochimica Acta, 2010, 74, 215-224.	3.9	52
56	Preparation and Physicochemical Characteristics of Luminescent Apatite-Based Colloids. Journal of Physical Chemistry C, 2010, 114, 2918-2924.	3.1	61
57	Adsorption and release of BMPâ€2 on nanocrystalline apatiteâ€coated and uncoated hydroxyapatite/βâ€tricalcium phosphate porous ceramics. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 706-715.	3.4	105
58	Bone mineral: update on chemical composition and structure. Osteoporosis International, 2009, 20, 1013-1021.	3.1	430
59	Nanocrystalline apatites: From powders to biomaterials. Powder Technology, 2009, 190, 118-122.	4.2	76
60	Production, by co-grinding in a media mill, of porous biodegradable polylactic acid–apatite composite materials for bone tissue engineering. Powder Technology, 2009, 190, 89-94.	4.2	19
61	New Advances in Nanocrystalline Apatite Colloids Intended for Cellular Drug Delivery. Langmuir, 2009, 25, 12256-12265.	3.5	62
62	Surface Characteristics of Nanocrystalline Apatites: Effect of Mg Surface Enrichment on Morphology, Surface Hydration Species, and Cationic Environments. Langmuir, 2009, 25, 5647-5654.	3.5	124
63	Impact of Calcium Phosphate Particle Morphology on Osteoconduction: an In Vivo Study. Key Engineering Materials, 2008, 361-363, 1237-1240.	0.4	2
64	Surface enrichment of biomimetic apatites with biologically-active ions Mg2+ and Sr2+: A preamble to the activation of bone repair materials. Materials Science and Engineering C, 2008, 28, 1544-1550.	7.3	92
65	Fluorideâ€Based Bioceramics. , 2008, , 279-331.		Ο
66	Nanocrystalline apatites in biological systems: characterisation, structure and properties. Materialwissenschaft Und Werkstofftechnik, 2007, 38, 996-1002.	0.9	95
67	Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials. Materials Science and Engineering C, 2007, 27, 198-205.	7.3	252
68	Chemical Diversity of Apatites. Advances in Science and Technology, 2006, 49, 27.	0.2	34
69	Bioceramics: Spark Plasma Sintering (SPS) of Calcium Phosphates. Advances in Science and Technology, 2006, 49, 45.	0.2	37
70	Jarosite stability on Mars. Icarus, 2005, 176, 250-253.	2.5	41
71	lon exchanges in apatites for biomedical application. Journal of Materials Science: Materials in Medicine, 2005, 16, 405-409.	3.6	151
72	Formation and Evolution of Hydrated Surface Layers of Apatites. Key Engineering Materials, 2005, 284-286, 3-6.	0.4	45

5

CHRISTOPHE DROUET

#	Article	lF	CITATIONS
73	Thermochemistry of yavapaiite KFe(SO4)2: Formation and decomposition. Geochimica Et Cosmochimica Acta, 2005, 69, 2133-2140.	3.9	23
74	Minéralisations biologiques à base de phosphate de calcium. Comptes Rendus - Palevol, 2004, 3, 563-572.	0.2	40
75	Thermochemistry of jarosite-alunite and natrojarosite-natroalunite solid solutions. Geochimica Et Cosmochimica Acta, 2004, 68, 2197-2205.	3.9	61
76	Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites. Geochimica Et Cosmochimica Acta, 2003, 67, 2063-2076.	3.9	158
77	On the thermochemistry of the solid solution between jarosite and its chromate analog. American Mineralogist, 2003, 88, 1949-1954.	1.9	26
78	Synthesis of mixed manganites with high surface area by thermal decomposition of oxalates. Journal of Materials Chemistry, 2002, 12, 3058-3063.	6.7	9
79	IR spectroscopic study of NO and CO adsorptions on nonstoichiometric nickel–copper manganites. Physical Chemistry Chemical Physics, 2001, 3, 3826-3830.	2.8	15
80	CO Oxidation over Nonstoichiometric Nickel Manganite Spinels. Journal of Catalysis, 2001, 198, 266-276.	6.2	45
81	Adsorption of nitric oxide and temperature programmed desorption on nonstoichiometric nickel–copper manganites. Applied Surface Science, 2001, 174, 289-295.	6.1	5
82	New spinel materials for catalytic NO–CO reaction: nonstoichiometric nickel–copper manganites. Applied Catalysis B: Environmental, 2001, 33, 35-43.	20.2	15
83	Equilibrium and Kinetics of NO and CO Chemisorptions on Nonstoichiometric Nickel–Copper Manganites. Journal of Colloid and Interface Science, 2000, 225, 440-446.	9.4	5
84	Synthesis, thermogravimetric and high temperature X-ray diffraction analyses of zinc-substituted nickel manganites. Materials Research Bulletin, 2000, 35, 431-439.	5.2	18
85	X-ray photoelectron spectroscopic study of non-stoichiometric nickel and nickel–copper spinel manganites. Solid State Sciences, 2000, 2, 419-426.	0.7	57
86	Synthesis and characterization of non-stoichiometric nickel–copper manganites. Solid State Ionics, 1999, 123, 25-37.	2.7	30
87	Shaping of Nanostructured Materials or Coatings through Spark Plasma Sintering. Materials Science Forum, 0, 706-709, 24-30.	0.3	6
88	Bioceramics: Spark Plasma Sintering (SPS) of Calcium Phosphates. Advances in Science and Technology, 0, , 45-50.	0.2	3