
Ilse R Geijzendorffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6449463/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Essential ecosystem service variables for monitoring progress towards sustainability. Current Opinion in Environmental Sustainability, 2022, 54, 101152.	3.1	33
2	Priority list of biodiversity metrics to observe from space. Nature Ecology and Evolution, 2021, 5, 896-906.	3.4	101
3	An increase in food production in Europe could dramatically affect farmland biodiversity. Communications Earth & Environment, 2021, 2, .	2.6	22
4	Mediterranean wetland conservation in the context of climate and land cover change. Regional Environmental Change, 2020, 20, 1.	1.4	21
5	Future impact of climate extremes in the Mediterranean: Soil erosion projections when fire and extreme rainfall meet. Land Degradation and Development, 2020, 31, 3040-3054.	1.8	44
6	Integrative policy development for healthier people and ecosystems: A European case analysis. Area, 2020, 52, 495-504.	1.0	3
7	Using social media, machine learning and natural language processing to map multiple recreational beneficiaries. Ecosystem Services, 2019, 38, 100958.	2.3	78
8	Estimating biodiversity changes in the Camargue wetlands: An expert knowledge approach. PLoS ONE, 2019, 14, e0224235.	1.1	12
9	A More Effective Ramsar Convention for the Conservation of Mediterranean Wetlands. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	28
10	Improving ecosystem assessments in Mediterranean social-ecological systems: a DPSIR analysis. Ecosystems and People, 2019, 15, 136-155.	1.3	35
11	The impact of conservation farming practices on Mediterranean agro-ecosystem services provisioning—a meta-analysis. Regional Environmental Change, 2019, 19, 2187-2202.	1.4	49
12	Impact of land cover change on ecosystem service supply in mountain systems: a case study in the Cantabrian Mountains (NW of Spain). Regional Environmental Change, 2019, 19, 529-542.	1.4	54
13	Global change effects on land management in the Mediterranean region. Global Environmental Change, 2018, 50, 238-254.	3.6	91
14	Land and farming system dynamics and their drivers in the Mediterranean Basin. Land Use Policy, 2018, 75, 702-710.	2.5	56
15	Impacts of urbanization around Mediterranean cities: Changes in ecosystem service supply. Ecological Indicators, 2018, 91, 589-606.	2.6	100
16	Mapping Mediterranean Wetlands With Remote Sensing: A Good-Looking Map Is Not Always a Good Map. Advances in Ecological Research, 2018, 58, 243-277.	1.4	34
17	A suite of essential biodiversity variables for detecting critical biodiversity change. Biological Reviews, 2018, 93, 55-71.	4.7	70
18	The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Science of the Total Environment, 2018, 613-614, 1376-1384.	3.9	143

Ilse R Geijzendorffer

#	Article	IF	CITATIONS
19	Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation, 2018, 4, 71-93.	2.2	176
20	Key criteria for developing ecosystem service indicators to inform decision making. Ecological Indicators, 2018, 95, 417-426.	2.6	93
21	European farm scale habitat descriptors for the evaluation of biodiversity. Ecological Indicators, 2017, 77, 205-217.	2.6	16
22	Ecosystem services in global sustainability policies. Environmental Science and Policy, 2017, 74, 40-48.	2.4	123
23	Global scenarios for biodiversity need to better integrate climate and land use change. Diversity and Distributions, 2017, 23, 1231-1234.	1.9	69
24	Interconnected place-based social–ecological research can inform global sustainability. Current Opinion in Environmental Sustainability, 2017, 29, 1-7.	3.1	102
25	ls citizen science an open science in the case of biodiversity observations?. Journal of Applied Ecology, 2017, 54, 612-617.	1.9	59
26	Taking stock of nature: Essential biodiversity variables explained. Biological Conservation, 2017, 213, 252-255.	1.9	43
27	Monitoring biodiversity change through effective global coordination. Current Opinion in Environmental Sustainability, 2017, 29, 158-169.	3.1	147
28	How can global conventions for biodiversity and ecosystem services guide local conservation actions?. Current Opinion in Environmental Sustainability, 2017, 29, 145-150.	3.1	12
29	EDITOR'S CHOICE: How much would it cost to monitor farmland biodiversity in Europe?. Journal of Applied Ecology, 2016, 53, 140-149.	1.9	21
30	Farmland biodiversity and agricultural management on 237 farms in 13 European and two African regions. Ecology, 2016, 97, 1625-1625.	1.5	15
31	Biodiversity scenarios neglect future landâ€use changes. Global Change Biology, 2016, 22, 2505-2515.	4.2	201
32	Why do forest products become less available?A pan-tropical comparison of drivers of forest-resource degradation. Environmental Research Letters, 2016, 11, 125010.	2.2	18
33	The Network of Knowledge approach: improving the science and society dialogue on biodiversity and ecosystem services in Europe. Biodiversity and Conservation, 2016, 25, 1215-1233.	1.2	44
34	Biodiversity knowledge synthesis at the European scale: actors and steps. Biodiversity and Conservation, 2016, 25, 1269-1284.	1.2	16
35	An assessment of soil erosion prevention by vegetation in Mediterranean Europe: Current trends of ecosystem service provision. Ecological Indicators, 2016, 60, 213-222.	2.6	92
36	Relating costs to the user value of farmland biodiversity measurements. Journal of Environmental Management, 2016, 165, 286-297.	3.8	7

Ilse R Geijzendorffer

#	Article	IF	CITATIONS
37	Bridging the gap between biodiversity data and policy reporting needs: An Essential Biodiversity Variables perspective. Journal of Applied Ecology, 2016, 53, 1341-1350.	1.9	129
38	Improving the identification of mismatches in ecosystem services assessments. Ecological Indicators, 2015, 52, 320-331.	2.6	181
39	Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Current Opinion in Environmental Sustainability, 2015, 14, 76-85.	3.1	559
40	Gains to species diversity in organically farmed fields are not propagated at the farm level. Nature Communications, 2014, 5, 4151.	5.8	89
41	The relevant scales of ecosystem services demand. Ecosystem Services, 2014, 10, 49-51.	2.3	43
42	Estimating the cost of different strategies for measuring farmland biodiversity: Evidence from a Europe-wide field evaluation. Ecological Indicators, 2014, 45, 434-443.	2.6	21
43	Can biodiversity monitoring schemes provide indicators for ecosystem services?. Ecological Indicators, 2013, 33, 148-157.	2.6	57
44	Spatio-temporal analysis of farm termination in animal husbandry in the Netherlands in the period 1997-2006 and implications for the future. Procedia Environmental Sciences, 2011, 7, 359-364.	1.3	0
45	Sustained dynamic transience in a Lotka–Volterra competition model system for grassland species. Ecological Modelling, 2011, 222, 2817-2824.	1.2	17
46	Exploring the future of European crop production in a liberalised market, with specific consideration of climate change and the regional competitiveness. Ecological Modelling, 2010, 221, 2177-2187.	1.2	39