List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6449262/publications.pdf Version: 2024-02-01

DALL DÃOVET

#	Article	IF	CITATIONS
1	Adrenergic signals direct rhythmic expression of transcriptional represser CREM in the pineal gland. Nature, 1993, 365, 314-320.	27.8	397
2	Melatonin: Both master clock output and internal time-giver in the circadian clocks network. Journal of Physiology (Paris), 2011, 105, 170-182.	2.1	284
3	Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature, 1993, 362, 264-267.	27.8	257
4	Kisspeptin Mediates the Photoperiodic Control of Reproduction in Hamsters. Current Biology, 2006, 16, 1730-1735.	3.9	235
5	The nuclear receptor REVâ€ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB Journal, 2012, 26, 3321-3335.	0.5	198
6	Melatonin Effects on Behavior: Possible Mediation by the Central GABAergic System. Neuroscience and Biobehavioral Reviews, 1996, 20, 403-412.	6.1	191
7	Feeding Cues Alter Clock Gene Oscillations and Photic Responses in the Suprachiasmatic Nuclei of Mice Exposed to a Light/Dark Cycle. Journal of Neuroscience, 2005, 25, 1514-1522.	3.6	187
8	Highâ€fat feeding alters the clock synchronization to light. Journal of Physiology, 2008, 586, 5901-5910.	2.9	174
9	Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms. European Journal of Neuroscience, 2003, 17, 221-228.	2.6	163
10	Basic aspects of melatonin action. Sleep Medicine Reviews, 1998, 2, 175-190.	8.5	160
11	The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved?. European Journal of Neuroscience, 2005, 22, 2531-2540.	2.6	154
12	Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. European Journal of Neuroscience, 2000, 12, 3146-3154.	2.6	150
13	Daily Rhythms of Melatonin Binding Sites in the Rat Pars tuberalis and Suprachiasmatic Nuclei; Evidence for a Regulation of Melatonin Receptors by Melatonin Itself. Neuroendocrinology, 1993, 57, 120-126.	2.5	144
14	Daily Rhythm of Tryptophan Hydroxylase-2 Messenger Ribonucleic Acid within Raphe Neurons Is Induced by Corticoid Daily Surge and Modulated by Enhanced Locomotor Activity. Endocrinology, 2007, 148, 5165-5172.	2.8	138
15	Forebrain oscillators ticking with different clock hands. Molecular and Cellular Neurosciences, 2008, 37, 209-221.	2.2	132
16	Rapid and reversible changes in intrahippocampal connectivity during the course of hibernation in European hamsters. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18775-18780.	7.1	125
17	Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Molecular Brain Research, 2004, 124, 143-151.	2.3	123
18	The circadian clock stops ticking during deep hibernation in the European hamster. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13816-13820.	7.1	121

#	Article	IF	CITATIONS
19	Daily Variations in Pineal Melatonin Concentrations in Inbred and Outbred Mice. Journal of Biological Rhythms, 1998, 13, 403-409.	2.6	115
20	The mt1 Melatonin Receptor and RORÎ ² Receptor Are Co-localized in Specific TSH-immunoreactive Cells in the Pars Tuberalis of the Rat Pituitary. Journal of Histochemistry and Cytochemistry, 2002, 50, 1647-1657.	2.5	114
21	Kisspeptin: A key link to seasonal breeding. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 57-65.	5.7	113
22	The Biological Clock: The Bodyguard of Temporal Homeostasis. Chronobiology International, 2004, 21, 1-25.	2.0	111
23	A Circannual Clock Drives Expression of Genes Central for Seasonal Reproduction. Current Biology, 2014, 24, 1500-1506.	3.9	109
24	Melatonin induces Cry1 expression in the pars tuberalis of the rat. Molecular Brain Research, 2003, 114, 101-106.	2.3	104
25	Effects of Nocturnal Light on (Clock) Gene Expression in Peripheral Organs: A Role for the Autonomic Innervation of the Liver. PLoS ONE, 2009, 4, e5650.	2.5	104
26	The Cerebellum Harbors a Circadian Oscillator Involved in Food Anticipation. Journal of Neuroscience, 2010, 30, 1894-1904.	3.6	102
27	From daily behavior to hormonal and neurotransmitters rhythms: Comparison between diurnal and nocturnal rat species. Hormones and Behavior, 2009, 55, 338-347.	2.1	100
28	Tissue-specific expression of tryptophan hydroxylase mRNAs in the rat midbrain: anatomical evidence and daily profiles. European Journal of Neuroscience, 2005, 22, 895-901.	2.6	98
29	Direct vasoactive intestinal polypeptide-containing projection from the suprachiasmatic nucleus to spinal projecting hypothalamic paraventricular neurons. Brain Research, 1997, 748, 71-76.	2.2	92
30	Kisspeptin and the seasonal control of reproduction in hamsters. Peptides, 2009, 30, 146-153.	2.4	90
31	Interactions between photic and nonphotic stimuli to synchronize the master circadian clock in mammals. Frontiers in Bioscience - Landmark, 2003, 8, s246-257.	3.0	86
32	Daily variations in melatonin receptor density of rat pars tuberalis and suprachiasmatic nuclei are distinctly regulated. Brain Research, 1994, 641, 92-98.	2.2	84
33	Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: a comparative analysis of melatonin-deficient C57BL mice and melatonin-proficient C3H mice. European Journal of Neuroscience, 2000, 12, 964-972.	2.6	84
34	Per and neuropeptide expression in the rat suprachiasmatic nuclei: compartmentalization and differential cellular induction by light. Brain Research, 2002, 958, 261-271.	2.2	82
35	Melatonin Controls Seasonal Breeding by a Network of Hypothalamic Targets. Neuroendocrinology, 2009, 90, 1-14.	2.5	82
36	Human skin keratinocytes, melanocytes, and fibroblasts contain distinct circadian clock machineries. Cellular and Molecular Life Sciences, 2012, 69, 3329-3339.	5.4	81

#	Article	IF	CITATIONS
37	Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species. European Journal of Neuroscience, 2008, 27, 818-827.	2.6	79
38	An (n-3) Polyunsaturated Fatty Acid–Deficient Diet Disturbs Daily Locomotor Activity, Melatonin Rhythm, and Striatal Dopamine in Syrian Hamsters13. Journal of Nutrition, 2008, 138, 1719-1724.	2.9	76
39	The Circadian Clock, Light/Dark Cycle and Melatonin Are Differentially Involved in the Expression of Daily and Photoperiodic Variations in mt ₁ Melatonin Receptors in the Siberian and Syrian Hamsters. Neuroendocrinology, 2001, 74, 55-68.	2.5	72
40	Glutamatergic clock output stimulates melatonin synthesis at night. European Journal of Neuroscience, 2004, 19, 318-324.	2.6	69
41	Specific destruction of the serotonergic afferents to the suprachiasmatic nuclei prevents triazolam-induced phase advances of hamster activity rhythms. Behavioural Brain Research, 1994, 62, 21-28.	2.2	68
42	Tryptophan Hydroxylase Synthesis Is Induced by 3', 5'-Cyclic Adenosine Monophosphate During Circadian Rhythm in the Rat Pineal Gland. Journal of Neurochemistry, 1991, 57, 1516-1521.	3.9	64
43	In Syrian and European hamsters, the duration of sensitive phase to light of the suprachiasmatic nuclei depends on the photoperiod. Neuroscience Letters, 1996, 208, 37-40.	2.1	61
44	MT1 melatonin receptor mRNA expression exhibits a circadian variation in the rat suprachiasmatic nuclei. Brain Research, 2002, 946, 64-71.	2.2	61
45	Endogenous melatonin provides an effective circadian message to both the suprachiasmatic nuclei and the pars tuberalis of the rat. Journal of Pineal Research, 2009, 46, 95-105.	7.4	60
46	MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations. Journal of Pineal Research, 2019, 67, e12575.	7.4	60
47	New light on the serotonergic paradox in the rat circadian system. Journal of Neurochemistry, 2009, 110, 231-243.	3.9	59
48	Circadian tryptophan hydroxylase levels and serotonin release in the suprachiasmatic nucleus of the rat. European Journal of Neuroscience, 2002, 15, 833-840.	2.6	58
49	In the rat, exogenous melatonin increases the amplitude of pineal melatonin secretion by a direct action on the circadian clock. European Journal of Neuroscience, 2002, 16, 1090-1098.	2.6	58
50	Neurogenetics of food anticipation. European Journal of Neuroscience, 2009, 30, 1676-1687.	2.6	57
51	Evidence for melatonin synthesis in rodent Harderian gland: A dynamic in vitro study. Journal of Pineal Research, 1998, 25, 54-64.	7.4	54
52	Hyperdopaminergia and altered locomotor activity in GABAB1-deficient mice. Journal of Neurochemistry, 2006, 97, 979-991.	3.9	54
53	A circulating ghrelin mimetic attenuates lightâ€induced phase delay of mice and lightâ€induced Fos expression in the suprachiasmatic nucleus of rats. European Journal of Neuroscience, 2008, 27, 1965-1972.	2.6	52
54	The pineal gland of the mole-rat (Spalax ehrenbergi, Nehring). Cell and Tissue Research, 1976, 174, 1-24.	2.9	50

#	Article	IF	CITATIONS
55	Reciprocal Relationships between General (Propofol) Anesthesia and Circadian Time in Rats. Neuropsychopharmacology, 2007, 32, 728-735.	5.4	50
56	Adrenergic and peptidergic regulations of hydroxyindole-O-methyltransferase activity in rat pineal gland. Brain Research, 1997, 777, 247-250.	2.2	49
57	Circadian and photic regulation of clock and clockâ€controlled proteins in the suprachiasmatic nuclei of calorieâ€restricted mice. European Journal of Neuroscience, 2007, 25, 3691-3701.	2.6	49
58	Presynaptic and Postsynaptic Effects of Neuropeptide Y in the Rat Pineal Gland. Journal of Neurochemistry, 1994, 62, 2464-2471.	3.9	49
59	Effects of Melatonin and 5-Methoxytryptamine on Sleep-Wake Patterns in the Male Rat. Journal of Pineal Research, 1986, 3, 135-141.	7.4	48
60	Circadian Organization in a Diurnal Rodent, Arvicanthis ansorgei Thomas 1910: Chronotypes, Responses to Constant Lighting Conditions, and Photoperiodic Changes. Journal of Biological Rhythms, 2002, 17, 52-64.	2.6	48
61	Melatonin. Dialogues in Clinical Neuroscience, 2002, 4, 57-72.	3.7	47
62	Melatonin Regulates the mRNA Expression of the mt ₁ Melatonin Receptor in the Rat Pars tuberalis. Neuroendocrinology, 2000, 71, 163-169.	2.5	45
63	Hypocretin (orexin) in the rat pineal gland: a central transmitter with effects on noradrenaline-induced release of melatonin. European Journal of Neuroscience, 2001, 14, 419-425.	2.6	45
64	Foodâ€reward signalling in the suprachiasmatic clock. Journal of Neurochemistry, 2010, 112, 1489-1499.	3.9	44
65	Effect of prolonged fasting and subsequent refeeding on free-running rhythms of temperature and locomotor activity in rats. Behavioural Brain Research, 1997, 84, 275-284.	2.2	42
66	Phenotype of Per1- and Per2- expressing neurons in the suprachiasmatic nucleus of a diurnal rodent () Tj ETQq0 (310, 85-92.	0 0 rgBT /(2.9	Overlock 10 T 42
67	The pineal gland of the mole (Talpa europaea L.). Cell and Tissue Research, 1974, 153, 277-92.	2.9	40
68	Photoperiodic Control of the Rat Pineal Arylalkylamine-N-Acetyltransferase and Hydroxyindole-O-Methyltransferase Gene Expression and Its Effect on Melatonin Synthesis. Journal of Biological Rhythms, 1999, 14, 105-115.	2.6	39
69	Circadian desynchronization triggers premature cellular aging in a diurnal rodent. FASEB Journal, 2015, 29, 4794-4803.	0.5	39
70	Melatonin receptors as therapeutic targets in the suprachiasmatic nucleus. Expert Opinion on Therapeutic Targets, 2016, 20, 1209-1218.	3.4	39
71	Cloning experiments and developmental expression of both melatonin receptor Mel1A mRNA and melatonin binding sites in the Syrian hamster suprachiasmatic nuclei. Molecular Brain Research, 1998, 60, 193-202.	2.3	38
72	MT1 melatonin receptor mRNA tissular localization by PCR amplification. Neuroendocrinology Letters, 2003, 24, 33-8.	0.2	37

#	Article	IF	CITATIONS
73	Seasonal variations of clock gene expression in the suprachiasmatic nuclei and pars tuberalis of the European hamster (Cricetus cricetus). European Journal of Neuroscience, 2007, 25, 1529-1536.	2.6	36
74	Analysis of melatonin, 5-methoxytryptophol and 5-methoxyindoleacetic acid in the pineal gland and retina of hamster by capillary column gas chromatography—mass spectrometry. Biomedical Applications, 1984, 311, 1-8.	1.7	35
75	The role of the intracellular and extracellular serotonin in the regulation of melatonin production in rat pinealocytes. Journal of Pineal Research, 1997, 23, 63-71.	7.4	35
76	Influence of the Mode of Daily Melatonin Administration on Entrainment of Rat Circadian Rhythms. Journal of Biological Rhythms, 1999, 14, 347-353.	2.6	35
77	Diurnal and circadian rhythms in melatonin synthesis in the turkey pineal gland and retina. General and Comparative Endocrinology, 2006, 145, 162-168.	1.8	35
78	Entrainment of the circadian clock by daily ambient temperature cycles in the camel (<i>Camelus) Tj ETQq0 0 0 rg Physiology, 2013, 304, R1044-R1052.</i>	gBT /Overl 1.8	ock 10 Tf 50 35
79	Daily regulation of body temperature rhythm in the camel (<i>Camelus dromedarius</i>) exposed to experimental desert conditions. Physiological Reports, 2014, 2, e12151.	1.7	35
80	Circadian clocks in rat skin and dermal fibroblasts: differential effects of aging, temperature and melatonin. Cellular and Molecular Life Sciences, 2015, 72, 2237-2248.	5.4	35
81	Circadian phenotyping of obese and diabetic db/db mice. Biochimie, 2016, 124, 198-206.	2.6	34
82	Daily infusion of melatonin entrains circadian activity rhythms in the diurnal rodent Arvicanthis ansorgei. Behavioural Brain Research, 2002, 133, 11-19.	2.2	33
83	Pineal melatonin is a circadian time-giver for leptin rhythm in Syrian hamsters. Frontiers in Neuroscience, 2015, 9, 190.	2.8	33
84	Role of the thalamic intergeniculate leaflet and its 5-HT afferences in the chronobiological properties of 8-OH-DPAT and triazolam in Syrian hamster. Brain Research, 1999, 849, 16-24.	2.2	32
85	Daily and Photoperiodic Melatonin Binding Changes in the Suprachiasmatic Nuclei, Paraventricular Thalamic Nuclei, and Pars Tuberalis of the Female Siberian Hamster (Phodopus sungorus). Journal of Biological Rhythms, 1996, 11, 325-332.	2.6	31
86	Molecular cloning of the arylalkylamine-N-acetyltransferase and daily variations of its mRNA expression in the Syrian hamster pineal gland. Molecular Brain Research, 1999, 71, 87-95.	2.3	31
87	Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmaticâ€lesioned rats. European Journal of Neuroscience, 2008, 28, 2451-2458.	2.6	31
88	No triazolam-induced expression of Fos protein in raphe nuclei of the male Syrian hamster. Brain Research, 1993, 602, 14-20.	2.2	29
89	The Decrease of Pineal Melatonin Production with Age Annals of the New York Academy of Sciences, 1994, 719, 43-63.	3.8	29
90	The internal time-giver role of melatonin. A key for our health. Revue Neurologique, 2014, 170, 646-652.	1.5	29

#	Article	IF	CITATIONS
91	Localization of binding sites for oxytocin in the brain of the golden hamster. NeuroReport, 1992, 3, 797-800.	1.2	28
92	Pinealarylalkylamine N-acetyltransferasegene expression is highly stimulated at night in the diurnal rodent,Arvicanthis ansorgei. European Journal of Neuroscience, 2002, 15, 1632-1640.	2.6	28
93	Setting the main circadian clock of a diurnal mammal by hypocaloric feeding. Journal of Physiology, 2012, 590, 3155-3168.	2.9	28
94	Differential Seasonal Regulation of Melatonin Receptor Density in the Pars Tuberalis and the Suprachiasmatic Nuclei: A Study in the Hedgehog (Erinaceus europaeus, L.). Journal of Neuroendocrinology, 1993, 5, 685-690.	2.6	27
95	Regional differences in testosterone effects on vasopressin receptors and on vasopressin immunoreactivity in intact and castrated Siberian hamsters. Brain Research, 1994, 638, 267-276.	2.2	27
96	Serotonergic Modulation of Photically Induced Increase in Melatonin Receptor Density and Fos Immunoreactivity in the Suprachiasmatic Nuclei of the Rat. Journal of Neuroendocrinology, 1996, 8, 839-845.	2.6	27
97	Does the intergeniculate leaflet play a role in the integration of the photoperiod by the suprachiasmatic nucleus?. Brain Research, 1999, 828, 83-90.	2.2	27
98	Light exposure during daytime modulates expression of Per1 and Per2 clock genes in the suprachiasmatic nuclei of mice. Journal of Neuroscience Research, 2003, 72, 629-637.	2.9	27
99	Evidence for a Regulatory Role of Melatonin on Serotonin Release and Uptake in the Pineal Gland. Journal of Neuroendocrinology, 1995, 7, 949-956.	2.6	26
100	Diurnal changes in the content of indoleamines, catecholamines, and methoxyindoles in the pineal gland of the Djungarian hamster (Phodopus sungorus): Effect of photoperiod. Journal of Pineal Research, 1996, 21, 7-14.	7.4	26
101	Ontogenesis of hydroxyindole-O-methyltransferase gene expression and activity in the rat pineal gland. Developmental Brain Research, 1998, 110, 235-239.	1.7	26
102	Entrainment of locomotor activity rhythm in pinealectomized adult Syrian hamsters by daily melatonin infusion. Behavioural Brain Research, 2002, 133, 343-350.	2.2	26
103	Photic and nonphotic effects on the circadian activity rhythm in the diurnal rodent. Behavioural Brain Research, 2005, 165, 91-97.	2.2	26
104	Timed hypocaloric feeding and melatonin synchronize the suprachiasmatic clockwork in rats, but with opposite timing of behavioral output. European Journal of Neuroscience, 2005, 22, 921-929.	2.6	25
105	KiSSâ€1: A Likely Candidate for the Photoperiodic Control of Reproduction in Seasonal Breeders. Chronobiology International, 2006, 23, 277-287.	2.0	25
106	Rat And Syrian Hamster: Two Models for The Regulation ofAANATGene Expression. Chronobiology International, 2006, 23, 351-359.	2.0	25
107	Differential regulation of melatonin receptors by short- versus long-term pinealectomy in the rat suprachiasmatic nuclei and pars tuberalis. Journal of Pineal Research, 1994, 16, 73-76.	7.4	24
108	The pineal gland of the aging rat: Calcium localization and variation in the number of pinealocytes. Journal of Pineal Research, 1995, 18, 32-40.	7.4	24

#	Article	lF	CITATIONS
109	Photoperiod does not act on the suprachiasmatic nucleus photosensitive phase through the endogenous melatonin, in the Syrian hamster. Neuroscience Letters, 1997, 229, 117-120.	2.1	24
110	Circannual Phase Response Curves to Short and Long Photoperiod in the European Hamster. Journal of Biological Rhythms, 2009, 24, 413-426.	2.6	24
111	Heterogeneity of intrinsically photosensitive retinal ganglion cells in the mouse revealed by molecular phenotyping. Journal of Comparative Neurology, 2013, 521, 912-932.	1.6	24
112	Vasoconstrictor Effects of Various Melatonin Analogs on the Rat Tail Artery in the Presence of Phenylephrine. Journal of Cardiovascular Pharmacology, 1999, 33, 316-322.	1.9	24
113	Oxytocin innervation of spinal preganglionic neurons projecting to the superior cervical ganglion in the rat. Cell and Tissue Research, 1997, 287, 481-486.	2.9	23
114	Daily variation in the concentration of melatonin and 5-methoxytryptophol in the goose pineal gland, retina, and plasma. General and Comparative Endocrinology, 2003, 134, 296-302.	1.8	23
115	Modulation of photic resetting in rats by lesions of projections to the suprachiasmatic nuclei expressing p75 neurotrophin receptor. European Journal of Neuroscience, 2004, 19, 1773-1788.	2.6	23
116	Temporal organization of the 24-h corticosterone rhythm in the diurnal murid rodent Arvicanthis ansorgei Thomas 1910. Brain Research, 2004, 995, 197-204.	2.2	23
117	Hormonal changes and energy substrate availability during the hibernation cycle of Syrian hamsters. Hormones and Behavior, 2013, 64, 611-617.	2.1	23
118	Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents. European Journal of Neuroscience, 2007, 25, 3080-3090.	2.6	22
119	Melatonin-independent Photoperiodic Entrainment of the Circannual TSH Rhythm in the Pars Tuberalis of the European Hamster. Journal of Biological Rhythms, 2018, 33, 302-317.	2.6	22
120	Intrinsic Photosensitive Retinal Ganglion Cells in the Diurnal Rodent, Arvicanthis ansorgei. PLoS ONE, 2013, 8, e73343.	2,5	21
121	Like melatonin, agomelatine (S20098) increases the amplitude of oscillations of two clock outputs: melatonin and temperature rhythms. Chronobiology International, 2014, 31, 371-381.	2.0	21
122	Ventromedial hypothalamic lesions prevent the fasting-induced changes in day-night pattern of locomotor activity. Behavioural Brain Research, 1996, 77, 155-163.	2.2	20
123	Radioimmunoassay of N-acetyl-N-formyl-5-methoxykynuramine (AFMK): a melatonin oxidative metabolite. Life Sciences, 2003, 73, 1587-1597.	4.3	20
124	Photoperiod Can Entrain Circannual Rhythms in Pinealectomized European Hamsters. Journal of Biological Rhythms, 2013, 28, 278-290.	2.6	20
125	Intergeniculate leaflets lesion delays but does not prevent the integration of photoperiodic change by the suprachiasmatic nuclei. Brain Research, 2001, 906, 176-179.	2.2	19
126	Daily Torpor Alters Multiple Gene Expression in the Suprachiasmatic Nucleus and Pineal Gland of the Djungarian Hamster (Phodopus sungorus). Chronobiology International, 2006, 23, 269-276.	2.0	19

#	Article	IF	CITATIONS
127	Melatonin and the circadian system: Keys for health with a focus on sleep. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 331-343.	1.8	19
128	The Output Signal of Purkinje Cells of the Cerebellum and Circadian Rhythmicity. PLoS ONE, 2013, 8, e58457.	2.5	19
129	Possible involvement of neuropeptide Y in the seasonal control of hydroxyindole-O-methyltransferase activity in the pineal gland of the European hamster (Cricetus) Tj ETQq1 1 0.	78 43 214 rg	gBT1/Overlock
130	Glucocorticoid-mediated nycthemeral and photoperiodic regulation of tph2 expression. European Journal of Neuroscience, 2011, 33, 1308-1317.	2.6	18
131	Mapping of [3H]vasopressin binding sites in the brain of jerboa (Jaculus orientalis) by an high resolution β-radio imager. Journal of Neuroscience Methods, 1993, 49, 231-240.	2.5	17
132	Sexual Dimorphism of Lipids in Harderian Glands of Golden Hamsters1. Journal of Biochemistry, 1995, 117, 661-670.	1.7	17
133	Distribution of hydroxyindole-O-methyltransferase mRNA in the rat brain: an in situ hybridisation study. Cell and Tissue Research, 1998, 291, 415-421.	2.9	17
134	Endogenous rhythmicity of <i>Bmal1</i> and <i>Revâ€erb</i> î± in the hamster pineal gland is not driven by norepinephrine. European Journal of Neuroscience, 2009, 29, 2009-2016.	2.6	17
135	Activation of glycine receptor phaseâ€shifts the circadian rhythm in neuronal activity in the mouse suprachiasmatic nucleus. Journal of Physiology, 2011, 589, 2287-2300.	2.9	17
136	A tubular configuration of the granular endoplasmic reticulum forming a raft-like parallel array in the pinealocytes of two species of Japanese moles (Mogera kobeae and M. wogura). Cell and Tissue Research, 1984, 236, 15-18.	2.9	16
137	Time course of neuronal sensitivity to light in the circadian timing system of the golden hamster. Neuroscience Letters, 1995, 201, 5-8.	2.1	16
138	Effect of a light pulse on melatonin receptor density and mRNA expression in Siberian hamster suprachiasmatic nuclei. Neuroscience Letters, 1997, 233, 49-52.	2.1	16
139	Phase-shifting effects of light on the circadian rhythms of 5-methoxytryptophol and melatonin in the chick pineal gland. Journal of Pineal Research, 2000, 29, 1-7.	7.4	16
140	Daily variation in the concentration of 5-methoxytryptophol and melatonin in the duck pineal gland and plasma. Journal of Pineal Research, 2002, 32, 214-218.	7.4	16
141	Pineal melatonin concentrations during day and night in the adult hedgehog: Effect of a light pulse at night and superior cervical ganglionectomy. Journal of Pineal Research, 1991, 11, 92-98.	7.4	15
142	How do the suprachiasmatic nuclei of the hypothalamus integrate photoperiodic information?. Biology of the Cell, 1997, 89, 569-577.	2.0	15
143	Leptin modulates the daily rhythmicity of blood glucose. Chronobiology International, 2015, 32, 637-649.	2.0	15
144	Ultrastructural Demonstration of Exocytosis in the Pineal Gland. Journal of Pineal Research, 1987, 4, 61-68.	7.4	14

#	Article	IF	CITATIONS
145	Neuropeptide Y increases intracellular calcium in rat pinealocytes. European Journal of Neuroscience, 1999, 11, 725-728.	2.6	14
146	Long-term daily melatonin infusion induces a large increase in N -acetyltransferase activity, hydroxyindole-O -methyltransferase activity, and melatonin content in the Harderian gland and eye of pinealectomized male Siberian hamsters (Phodopus sungorus). Journal of Pineal Research, 2000, 29, 65-73.	7.4	14
147	5-HT3 receptor-mediated photic-like responses of the circadian clock in the rat. Neuropharmacology, 2007, 52, 662-671.	4.1	14
148	Serotonergic potentiation of dark pulseâ€induced phaseâ€shifting effects at midday in hamsters. Journal of Neurochemistry, 2008, 106, 1404-1414.	3.9	14
149	Short day-length increases sucrose consumption and adiposity in rats fed a high-fat diet. Psychoneuroendocrinology, 2008, 33, 1269-1278.	2.7	14
150	Daily Behavioral Rhythmicity and Organization of the Suprachiasmatic Nuclei in the Diurnal Rodent, <i>Lemniscomys barbarus</i> . Chronobiology International, 2008, 25, 882-904.	2.0	14
151	Aging-like circadian disturbances in folate-deficient mice. Neurobiology of Aging, 2013, 34, 1589-1598.	3.1	14
152	Melatonin rhythm and other outputs of the master circadian clock in the desert goat (<i>Capra) Tj ETQq0 0 0 rgE e12634.</i>	3T /Overloo 7.4	ck 10 Tf 50 4 14
153	Entrainment of Circadian Activity Rhythms in Rats to Melatonin Administered at T Cycles Different from 24 Hours. NeuroSignals, 2002, 11, 73-80.	0.9	13
154	Light and Melatonin Inhibit In Vivo Serotonergic Phase Advances Without Altering Serotonergic-Induced Decrease of <i>Per</i> Expression in the Hamster Suprachiasmatic Nucleus. Journal of Molecular Neuroscience, 2005, 25, 053-064.	2.3	13
155	Effect of Melatonin Implants during the Non-Breeding Season on the Onset of Ovarian Activity and the Plasma Prolactin in Dromedary Camel. Frontiers in Veterinary Science, 2018, 5, 44.	2.2	13
156	Vasopressin potentiation of the melatonin synthetic pathway via specific V1a receptors in the rat pineal gland. Regulatory Peptides, 1996, 61, 63-69.	1.9	12
157	Bergamot (<i>Citrus bergamia</i> Risso et Poiteau) essential oil: Biological properties, cosmetic and medical use. A review. Journal of Essential Oil Research, 2012, 24, 195-201.	2.7	12
158	The Suprachiasmatic Nucleus of the Dromedary Camel (Camelus dromedarius): Cytoarchitecture and Neurochemical Anatomy. Frontiers in Neuroanatomy, 2017, 11, 103.	1.7	12
159	Secretoneurin: a new neuropeptide in the rodent pineal gland. Cell and Tissue Research, 1997, 288, 427-434.	2.9	11
160	Daily and photoperiodic 2-125I-melatonin binding changes in the pars tuberalis of the Syrian hamster (Mesocricetus auratus): Effect of constant light exposure and pinealectomy. Journal of Pineal Research, 1998, 24, 162-167.	7.4	11
161	Expression and regulation of Icer mRNA in the Syrian hamster pineal gland. Molecular Brain Research, 2003, 112, 163-169.	2.3	11
162	Complex regional influence of photoperiod on the nycthemeral functioning of the dorsal and median raphA© serotoninergic system in the Syrian hamster. European Journal of Neuroscience, 2009, 30, 1790-1801.	2.6	11

#	Article	IF	CITATIONS
163	Entrainment of circadian rhythms of locomotor activity by ambient temperature cycles in the dromedary camel. Scientific Reports, 2020, 10, 19515.	3.3	11
164	Vacuolated pinealocytes in the hedgehog (Erinaceus europaeus L.) and the mole (Talpa europaea L.). Cell and Tissue Research, 1975, 159, 303-9.	2.9	10
165	Permeability of the pineal gland of the rat to lanthanum: Significance of dark pinealocytes. Journal of Pineal Research, 1992, 12, 84-88.	7.4	10
166	The somatostatin system of the brain and hibernation in the European hamster (Cricetus cricetus). Cell and Tissue Research, 1997, 288, 441-447.	2.9	10
167	Pineal melatonin synthesis and release are not altered throughout the estrous cycle in female rats. Journal of Pineal Research, 2003, 34, 53-59.	7.4	10
168	Environmental control and adrenergic regulation of pineal activity in the diurnal tropical rodent, Arvicanthis ansorgei. Journal of Pineal Research, 2005, 38, 189-197.	7.4	10
169	Daily Oscillation in Melatonin Synthesis in The Turkey Pineal Gland and Retina: Diurnal and Circadian Rhythms. Chronobiology International, 2006, 23, 341-350.	2.0	10
170	DailyAaâ€natGene Expression in the Camel (Camelus dromedarius) Pineal Gland. Chronobiology International, 2008, 25, 800-807.	2.0	10
171	Entrainment of rat circadian rhythms by melatonin does not depend on the serotonergic afferents to the suprachiasmatic nuclei. Brain Research, 2000, 876, 10-16.	2.2	9
172	Testosterone-dependent and -independent mechanisms involved in the photoperiodic control of neuropeptide levels in the brain of the jerboa (Jaculus orientalis). Brain Research, 2003, 967, 63-72.	2.2	9
173	Impaired cognitive performance in rats after complete epithalamus lesions, but not after pinealectomy alone. Behavioural Brain Research, 2005, 161, 276-285.	2.2	9
174	Altered Circadian Rhythm of Melatonin Concentrations in Hypocretin-Deficient Men. Chronobiology International, 2012, 29, 356-362.	2.0	9
175	Diet-induced insulin resistance state disturbs brain clock processes and alters tuning of clock outputs in the Sand rat, Psammomys obesus. Brain Research, 2018, 1679, 116-124.	2.2	9
176	Sexual diversity of the lipid metabolism in the Harderian gland of the golden hamster. , 1996, 34, 71-76.		8
177	A possible role of collagen fibrils in the process of calcification observed in the capsule of the pineal gland in aging rats. Cell and Tissue Research, 1997, 288, 435-439.	2.9	8
178	Peptidergic Modulation of Serotonin Release from Cultured Rat Pinealocytes. Journal of Neuroendocrinology, 1997, 9, 537-543.	2.6	8
179	Photoperiodic dependent changes in the number of neurons containing mRNA encoding neuropeptide Y in the intergeniculate leaflet of the Syrian hamster. Brain Research, 1998, 813, 160-166.	2.2	8
180	Daily torpor affects the molecular machinery of the circadian clock in Djungarian hamsters (<i>Phodopus sungorus</i>). European Journal of Neuroscience, 2007, 26, 2739-2746.	2.6	8

#	Article	IF	CITATIONS
181	Regulation of Melatonin Receptors in the Pars Tuberalis of Syrian Hamsters Transferred from Long to Short Photoperiod: Implication of Melatonin and Testosterone. Journal of Neuroendocrinology, 2008, 10, 303-308.	2.6	8
182	The Daily Melatonin Pattern in Djungarian Hamsters Depends on the Circadian Phenotype. Chronobiology International, 2011, 28, 873-882.	2.0	8
183	The circadian gene Clock oscillates in the suprachiasmatic nuclei of the diurnal rodent Barbary striped grass mouse, Lemniscomys barbarus: A general feature of diurnality?. Brain Research, 2015, 1594, 165-172.	2.2	8
184	Implicating a Temperature-Dependent Clock in the Regulation of Torpor Bout Duration in Classic Hibernation. Journal of Biological Rhythms, 2018, 33, 626-636.	2.6	8
185	Short-term propofol anaesthesia down-regulates clock genes expression in the master clock. Chronobiology International, 2018, 35, 1735-1741.	2.0	8
186	Food-Anticipatory Activity in Syrian Hamsters: Behavioral and Molecular Responses in the Hypothalamus According to Photoperiodic Conditions. PLoS ONE, 2015, 10, e0126519.	2.5	7
187	A functional subdivision of the circadian clock is revealed by differential effects of melatonin administration. Neuroscience Letters, 2006, 396, 73-76.	2.1	6
188	Electron probe X-ray microanalysis of the elemental composition of the pineal gland of young adults and aged rats. Journal of Pineal Research, 1996, 20, 39-44.	7.4	5
189	Turkey retina and pineal gland differentially respond to constant environment. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 907-913.	1.6	5
190	Major role of MT2 receptors in the beneficial effect of melatonin on long-term recognition memory in C57BL/6J male mice. Hormones and Behavior, 2021, 136, 105076.	2.1	5
191	Trans-pineal microdialysis in the Djungarian hamster (Phodopus sungorus): a tool to study seasonal changes of circadian clock activities. Journal of Pineal Research, 2006, 40, 177-183.	7.4	4
192	Light-induced c-Fos expression in the SCN and behavioural phase shifts of Djungarian hamsters with a delayed activity onset. Chronobiology International, 2015, 32, 596-607.	2.0	4
193	Smartphone and a freely available application as a new tool to record locomotor activity rhythm in large mammals and humans. Chronobiology International, 2019, 36, 1047-1057.	2.0	4
194	Melatonin receptors in the suprachiasmatic nuclei and pars tuberalis of testosterone induced photoresponsive rats. Neuroscience Letters, 1996, 214, 53-56.	2.1	3
195	Photoperiodic Control of the Seasonal Variations in the Daily Pattern of Melatonin Synthesis in the European Hamster, Cricetus cricetus. Annals of the New York Academy of Sciences, 1998, 839, 386-387.	3.8	3
196	Effects of Cycloheximide and Aminophylline on 5-Methoxytryptophol and Melatonin Contents in the Chick Pineal Gland. General and Comparative Endocrinology, 2000, 120, 212-219.	1.8	3
197	Neuropeptides and Photoperiodic Regulation of Melatonin Synthesis. Annals of the New York Academy of Sciences, 1998, 839, 284-287.	3.8	2
198	Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses. Journal of Neuroscience Research, 2009, 87, 758-765.	2.9	2

#	Article	IF	CITATIONS
199	De novo assembly and annotation of the retinal transcriptome for the Nile grass rat (Arvicanthis) Tj ETQq1 1 0.78	4314 rgBT 2.5	/Overlock
200	Phase shift of the circannual reproductive rhythm in European hamsters by 2 days of long photoperiod. Neuroendocrinology Letters, 2010, 31, 738-42.	0.2	2
201	Seasonal variations in locomotor activity rhythm and diurnal activity in the dromedary camel <i>(Camelus dromedarius)</i> under mesic semi-natural conditions. Chronobiology International, 2022, 39, 129-150.	2.0	2
202	Identification d'un nouveau signal de l'horloge circadienne chez les mammifères : le TGF-α. Medecine/Sciences, 2002, 18, 1103-1106.	0.2	1
203	Pinealectomy and gonadectomy modulate amplitude, but not photoperiodic modulation of <i>Clock</i> gene expression in the Syrian hamster suprachiasmatic nuclei. European Journal of Neuroscience, 2021, 53, 3612-3620.	2.6	1
204	Andreas Oksche. Journal of Biological Rhythms, 2017, 32, 99-100.	2.6	0