
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6449117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of N1-arylidene-N2-quinolyl- and N2-acrydinylhydrazones as potent antimalarial agents active against CQ-resistant P. falciparum strains. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5384-5388.	2.2	142
2	Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease. Progress in Neurobiology, 2017, 151, 4-34.	5.7	128
3	Pyrroloquinoxaline Derivatives as High-Affinity and Selective 5-HT3Receptor Agonists:Â Synthesis, Further Structureâ Activity Relationships, and Biological Studies. Journal of Medicinal Chemistry, 1999, 42, 4362-4379.	6.4	103
4	Synthesis and Pharmacological Evaluation of Potent and Highly Selective D3 Receptor Ligands: Inhibition of Cocaine-Seeking Behavior and the Role of Dopamine D3/D2 Receptors. Journal of Medicinal Chemistry, 2003, 46, 3822-3839.	6.4	90
5	Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation. European Journal of Medicinal Chemistry, 2016, 121, 864-879.	5.5	80
6	Discovery of a New Class of Potential Multifunctional Atypical Antipsychotic Agents Targeting Dopamine D3 and Serotonin 5-HT1A and 5-HT2A Receptors: Design, Synthesis, and Effects on Behavior. Journal of Medicinal Chemistry, 2009, 52, 151-169.	6.4	79
7	Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. Journal of Medicinal Chemistry, 2020, 63, 13466-13513.	6.4	75
8	Design, Synthesis, and Structure–Activity Relationship Studies of 4-Quinolinyl- and 9-Acrydinylhydrazones as Potent Antimalarial Agents. Journal of Medicinal Chemistry, 2008, 51, 1333-1343.	6.4	73
9	Specific Targeting of Hepatitis C Virus NS3 RNA Helicase. Discovery of the Potent and Selective Competitive Nucleotide-Mimicking Inhibitor QU663. Biochemistry, 2005, 44, 9637-9644.	2.5	71
10	Development and Pharmacological Characterization of Selective Blockers of 2-Arachidonoyl Glycerol Degradation with Efficacy in Rodent Models of Multiple Sclerosis and Pain. Journal of Medicinal Chemistry, 2016, 59, 2612-2632.	6.4	70
11	Old but Gold: Tracking the New Guise of Histone Deacetylase 6 (HDAC6) Enzyme as a Biomarker and Therapeutic Target in Rare Diseases. Journal of Medicinal Chemistry, 2020, 63, 23-39.	6.4	69
12	Dopamine D3 Receptor Antagonists as Potential Therapeutics for the Treatment of Neurological Diseases. Frontiers in Neuroscience, 2016, 10, 451.	2.8	66
13	Development of Molecular Probes for the Identification of Extra Interaction Sites in the Mid-Gorge and Peripheral Sites of Butyrylcholinesterase (BuChE). Rational Design of Novel, Selective, and Highly Potent BuChE Inhibitorsâ€. Journal of Medicinal Chemistry, 2005, 48, 1919-1929.	6.4	65
14	Pyrrolo[1,3]benzothiazepine-Based Serotonin and Dopamine Receptor Antagonists. Molecular Modeling, Further Structureâ^'Activity Relationship Studies, and Identification of Novel Atypical Antipsychotic Agents. Journal of Medicinal Chemistry, 2004, 47, 143-157.	6.4	60
15	Mimicking the Intramolecular Hydrogen Bond: Synthesis, Biological Evaluation, and Molecular Modeling of Benzoxazines and Quinazolines as Potential Antimalarial Agents. Journal of Medicinal Chemistry, 2012, 55, 10387-10404.	6.4	58
16	Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking. Scientific Reports, 2015, 5, 9705.	3.3	58
17	Polypharmacology of dopamine receptor ligands. Progress in Neurobiology, 2016, 142, 68-103.	5.7	57
18	Exploiting Protein Fluctuations at the Active-Site Gorge of Human Cholinesterases: Further Optimization of the Design Strategy to Develop Extremely Potent Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 3154-3170.	6.4	56

#	Article	IF	CITATIONS
19	Combining 4-Aminoquinoline- and Clotrimazole-Based Pharmacophores toward Innovative and Potent Hybrid Antimalarials. Journal of Medicinal Chemistry, 2009, 52, 502-513.	6.4	55
20	Pyrrolo[1,5]benzoxa(thia)zepines as a New Class of Potent Apoptotic Agents. Biological Studies and Identification of an Intracellular Location of Their Drug Target. Journal of Medicinal Chemistry, 2005, 48, 4367-4377.	6.4	53
21	Computational Tool for Fast in silico Evaluation of hERG K+ Channel Affinity. Frontiers in Chemistry, 2017, 5, 7.	3.6	52
22	Diseaseâ€Modifying Antiâ€Alzheimer's Drugs: Inhibitors of Human Cholinesterases Interfering with <i>β</i> â€Amyloid Aggregation. CNS Neuroscience and Therapeutics, 2014, 20, 624-632.	3.9	51
23	Discovery of Huperzine Aâ^'Tacrine Hybrids as Potent Inhibitors of Human Cholinesterases Targeting Their Midgorge Recognition Sites. Journal of Medicinal Chemistry, 2006, 49, 3421-3425.	6.4	50
24	Development of antitubercular compounds based on a 4-quinolylhydrazone scaffold. Further structure–activity relationship studies. Bioorganic and Medicinal Chemistry, 2009, 17, 6063-6072.	3.0	50
25	Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Medicinal Research Reviews, 2020, 40, 1002-1060.	10.5	49
26	Neuronal High-Affinity Sodium-Dependent Glutamate Transporters (EAATs): Targets for the Development of Novel Therapeutics Against Neurodegenerative Diseases. Current Pharmaceutical Design, 2003, 9, 599-625.	1.9	47
27	Targeting Dopamine D3 and Serotonin 5-HT1A and 5-HT2A Receptors for Developing Effective Antipsychotics: Synthesis, Biological Characterization, and Behavioral Studies. Journal of Medicinal Chemistry, 2014, 57, 9578-9597.	6.4	46
28	Clotrimazole Scaffold as an Innovative Pharmacophore Towards Potent Antimalarial Agents: Design, Synthesis, and Biological and Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2008, 51, 1278-1294.	6.4	45
29	Pyrroloquinoxaline hydrazones as fluorescent probes for amyloid fibrils. Organic and Biomolecular Chemistry, 2011, 9, 5137.	2.8	44
30	Specific Targeting Highly Conserved Residues in the HIV-1 Reverse Transcriptase Primer Grip Region. Design, Synthesis, and Biological Evaluation of Novel, Potent, and Broad Spectrum NNRTIs with Antiviral Activity. Journal of Medicinal Chemistry, 2005, 48, 7153-7165.	6.4	43
31	Optimization of 4-Aminoquinoline/Clotrimazole-Based Hybrid Antimalarials: Further Structure–Activity Relationships, in Vivo Studies, and Preliminary Toxicity Profiling. Journal of Medicinal Chemistry, 2012, 55, 6948-6967.	6.4	43
32	Development of Potent Inhibitors of the <i>Mycobacterium tuberculosis</i> Virulence Factor Zmp1 and Evaluation of Their Effect on Mycobacterial Survival inside Macrophages. ChemMedChem, 2018, 13, 422-430.	3.2	43
33	Synthesis of Dihydroplakortin, 6- <i>epi</i> -Dihydroplakortin, and Their C10-Desethyl Analogues. Journal of Organic Chemistry, 2010, 75, 2333-2340.	3.2	42
34	A new microtubule-targeting compound PBOX-15 inhibits T-cell migration via post-translational modifications of tubulin. Journal of Molecular Medicine, 2008, 86, 457-469.	3.9	41
35	Design and Synthesis of Potent Antimalarial Agents Based on Clotrimazole Scaffold:Â Exploring an Innovative Pharmacophore. Journal of Medicinal Chemistry, 2007, 50, 595-598.	6.4	40
36	Multifunctional Cholinesterase and Amyloid Beta Fibrillization Modulators. Synthesis and Biological Investigation. ACS Medicinal Chemistry Letters, 2013, 4, 1178-1182.	2.8	40

#	Article	IF	CITATIONS
37	Synthetic spirocyclic endoperoxides: new antimalarial scaffolds. MedChemComm, 2015, 6, 357-362.	3.4	39
38	Multiple Targeting Approaches on Histamine H3 Receptor Antagonists. Frontiers in Neuroscience, 2016, 10, 201.	2.8	39
39	Identification of novel fluorescent probes preventing PrP Sc replication in prion diseases. European Journal of Medicinal Chemistry, 2017, 127, 859-873.	5.5	39
40	Novel spiroindoline HDAC inhibitors: Synthesis, molecular modelling and biological studies. European Journal of Medicinal Chemistry, 2018, 157, 127-138.	5.5	39
41	The Structural Evolution of β-Secretase Inhibitors: A Focus on the Development of Small-Molecule Inhibitors. Current Topics in Medicinal Chemistry, 2013, 13, 1787-1807.	2.1	39
42	Specific Targeting of Peripheral Serotonin 5-HT ₃ Receptors. Synthesis, Biological Investigation, and Structureâ^Activity Relationships. Journal of Medicinal Chemistry, 2009, 52, 3548-3562.	6.4	38
43	Rational design of the first difluorostatone-based PfSUB1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3582-3586.	2.2	38
44	The FAAH inhibitor URB597 suppresses hippocampal maximal dentate afterdischarges and restores seizure-induced impairment of short and long-term synaptic plasticity. Scientific Reports, 2017, 7, 11152.	3.3	38
45	Novel Atypical Antipsychotic Agents:Â Rational Design, an Efficient Palladium-Catalyzed Route, and Pharmacological Studies. Journal of Medicinal Chemistry, 2005, 48, 1705-1708.	6.4	37
46	Pyrrolo[1,3]benzothiazepine-Based Atypical Antipsychotic Agents. Synthesis, Structureâ^'Activity Relationship, Molecular Modeling, and Biological Studies. Journal of Medicinal Chemistry, 2002, 45, 344-359.	6.4	36
47	Endocannabinoid Modulation of Predator Stress-Induced Long-Term Anxiety in Rats. Neuropsychopharmacology, 2016, 41, 1329-1339.	5.4	36
48	iPSC-derived neurons profiling reveals GABAergic circuit disruption and acetylated α-tubulin defect which improves after iHDAC6 treatment in Rett syndrome. Experimental Cell Research, 2018, 368, 225-235.	2.6	36
49	Novel, Potent, and Selective Quinoxaline-Based 5-HT ₃ Receptor Ligands. 1. Further Structureâ ^{°,} 'Activity Relationships and Pharmacological Characterization. Journal of Medicinal Chemistry, 2009, 52, 6946-6950.	6.4	35
50	Structural characterization of Giardia duodenalis thioredoxin reductase (g TrxR) and computational analysis of its interaction with NBDHEX. European Journal of Medicinal Chemistry, 2017, 135, 479-490.	5.5	35
51	A Repurposing Approach for Uncovering the Anti-Tubercular Activity of FDA-Approved Drugs with Potential Multi-Targeting Profiles. Molecules, 2019, 24, 4373.	3.8	34
52	First dual AK/GSK-3β inhibitors endowed with antioxidant properties as multifunctional, potential neuroprotective agents. European Journal of Medicinal Chemistry, 2017, 138, 438-457.	5.5	33
53	Development of a Multiplexed Activity-Based Protein Profiling Assay to Evaluate Activity of Endocannabinoid Hydrolase Inhibitors. ACS Chemical Biology, 2018, 13, 2406-2413.	3.4	33
54	Telomerase-based Cancer Therapeutics: A Review on their Clinical Trials. Current Topics in Medicinal Chemistry, 2020, 20, 433-457.	2.1	33

#	Article	IF	CITATIONS
55	Discovery of Potent Inhibitors of Human and Mouse Fatty Acid Amide Hydrolases. Journal of Medicinal Chemistry, 2012, 55, 6898-6915.	6.4	32
56	Identification of Novel 3-Hydroxy-pyran-4-One Derivatives as Potent HIV-1 Integrase Inhibitors Using in silico Structure-Based Combinatorial Library Design Approach. Frontiers in Chemistry, 2019, 7, 574.	3.6	32
57	The Novel Tubulin-Targeting Agent Pyrrolo-1,5-Benzoxazepine-15 Induces Apoptosis in Poor Prognostic Subgroups of Chronic Lymphocytic Leukemia. Cancer Research, 2009, 69, 8366-8375.	0.9	31
58	Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. European Journal of Medicinal Chemistry, 2019, 162, 290-320.	5.5	31
59	Quinolylhydrazones as novel inhibitors of Plasmodium falciparum serine protease PfSUB1. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5317-5321.	2.2	28
60	Synthesis and structure–activity relationship studies in serotonin 5-HT1A receptor agonists based on fused pyrrolidone scaffolds. European Journal of Medicinal Chemistry, 2013, 63, 85-94.	5.5	28
61	Raising the bar in anticancer therapy: recent advances in, and perspectives on, telomerase inhibitors. Drug Discovery Today, 2019, 24, 1370-1388.	6.4	28
62	An Efficient Approach to Chiral C8/C9-Piperazino-Substituted 1,4-Benzodiazepin-2-ones as Peptidomimetic Scaffolds. Journal of Organic Chemistry, 2008, 73, 8458-8468.	3.2	27
63	Non-Nucleoside Inhibitors of Human Adenosine Kinase: Synthesis, Molecular Modeling, and Biological Studies. Journal of Medicinal Chemistry, 2011, 54, 1401-1420.	6.4	27
64	PBOX-15, a novel microtubule targeting agent, induces apoptosis, upregulates death receptors, and potentiates TRAIL-mediated apoptosis in multiple myeloma cells. British Journal of Cancer, 2011, 104, 281-289.	6.4	27
65	Antimalarial agents against both sexual and asexual parasites stages: structure-activity relationships and biological studies of the Malaria Box compound 1-[5-(4-bromo-2-chlorophenyl)furan-2-yl]-N-[(piperidin-4-yl)methyl]methanamine (MMV019918) and analogues. European Journal of Medicinal Chemistry. 2018. 150. 698-718.	5.5	27
66	Allosteric Modulation of Ionotropic Glutamate Receptors: An Outlook on New Therapeutic Approaches To Treat Central Nervous System Disorders. ACS Medicinal Chemistry Letters, 2019, 10, 228-236.	2.8	27
67	Tacrine based human cholinesterase inhibitors: Synthesis of peptidic-tethered derivatives and their effect on potency and selectivity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5213-5216.	2.2	26
68	Development of novel cyclic peptides as pro-apoptotic agents. European Journal of Medicinal Chemistry, 2016, 117, 301-320.	5.5	26
69	Screening and Phenotypical Characterization of <i>Schistosoma mansoni</i> Histone Deacetylase 8 (<i>Sm</i> HDAC8) Inhibitors as Multistage Antischistosomal Agents. ACS Infectious Diseases, 2020, 6, 100-113.	3.8	26
70	Harnessing the Role of HDAC6 in Idiopathic Pulmonary Fibrosis: Design, Synthesis, Structural Analysis, and Biological Evaluation of Potent Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 9960-9988.	6.4	26
71	Discovery of Bishomo(hetero)arylpiperazines as Novel Multifunctional Ligands Targeting Dopamine D3and Serotonin 5-HT1Aand 5-HT2AReceptors. Journal of Medicinal Chemistry, 2010, 53, 4803-4807.	6.4	25
72	Synthesis and Antiplasmodial Activity of Bicyclic Dioxanes as Simplified Dihydroplakortin Analogues. Journal of Medicinal Chemistry, 2011, 54, 5949-5953.	6.4	25

#	Article	IF	CITATIONS
73	Synthetic studies toward 1,2-dioxanes as precursors of potential endoperoxide-containing antimalarials. Tetrahedron Letters, 2009, 50, 5719-5722.	1.4	24
74	Spiroindoline-Capped Selective HDAC6 Inhibitors: Design, Synthesis, Structural Analysis, and Biological Evaluation. ACS Medicinal Chemistry Letters, 2020, 11, 2268-2276.	2.8	23
75	1H-Cyclopentapyrimidine-2,4(1H,3H)-dione-Related Ionotropic Glutamate Receptors Ligands. Structureâ^'Activity Relationships and Identification of Potent and Selective iGluR5 Modulators. Journal of Medicinal Chemistry, 2008, 51, 6614-6618.	6.4	22
76	The pyrrolo-1,5-benzoxazepine, PBOX-15, enhances TRAIL-induced apoptosis by upregulation of DR5 and downregulation of core cell survival proteins in acute lymphoblastic leukaemia cells. International Journal of Oncology, 2016, 49, 74-88.	3.3	22
77	Novel quinolone-based potent and selective HDAC6 inhibitors: Synthesis, molecular modeling studies and biological investigation. European Journal of Medicinal Chemistry, 2021, 212, 112998.	5.5	22
78	Synthesis, Molecular Modelling and Biological Studies of 3-hydroxypyrane- 4-one and 3-hydroxy-pyridine-4-one Derivatives as HIV-1 Integrase Inhibitors. Medicinal Chemistry, 2019, 15, 755-770.	1.5	22
79	Selective Kainate Receptor (GluK1) Ligands Structurally Based upon 1 <i>H</i> -Cyclopentapyrimidin-2,4(1 <i>H</i> ,3 <i>H</i>)-dione: Synthesis, Molecular Modeling, and Pharmacological and Biostructural Characterization. Journal of Medicinal Chemistry, 2011, 54, 4793-4805.	6.4	21
80	Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells, 2022, 11, 471.	4.1	21
81	Microwave-assisted synthesis of 4-quinolylhydrazines followed by nickel boride reduction: a convenient approach to 4-aminoquinolines and derivatives. Tetrahedron Letters, 2008, 49, 2074-2077.	1.4	20
82	Antitumor effect of pyrrolo-1,5-benzoxazepine-15 and its synergistic effect with Oxaliplatin and 5-FU in colorectal cancer cells. Cancer Biology and Therapy, 2016, 17, 849-858.	3.4	20
83	(<i>S</i>)-2-Amino-3-(5-methyl-3-hydroxyisoxazol-4-yl)propanoic Acid (AMPA) and Kainate Receptor Ligands: Further Exploration of Bioisosteric Replacements and Structural and Biological Investigation. Journal of Medicinal Chemistry, 2018, 61, 2124-2130.	6.4	20
84	The novel pyrrolo-1,5-benzoxazepine, PBOX-6, synergistically enhances the apoptotic effects of carboplatin in drug sensitive and multidrug resistant neuroblastoma cells. Biochemical Pharmacology, 2014, 87, 611-624.	4.4	19
85	Targeting clinically-relevant metallo- β -lactamases: from high-throughput docking to broad-spectrum inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 98-109.	5.2	19
86	Phenylpyrrole-based HDAC inhibitors: synthesis, molecular modeling and biological studies. Future Medicinal Chemistry, 2016, 8, 1573-1587.	2.3	19
87	Development of Potent Inhibitors of Fatty Acid Amide Hydrolase Useful for the Treatment of Neuropathic Pain. ChemMedChem, 2018, 13, 2090-2103.	3.2	19
88	Harnessing the pyrroloquinoxaline scaffold for FAAH and MAGL interaction: definition of the structural determinants for enzyme inhibition. RSC Advances, 2016, 6, 64651-64664.	3.6	19
89	Development of piperazine-tethered heterodimers as potent antimalarials against chloroquine-resistant P. falciparum strains. Synthesis and molecular modeling. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3535-3539.	2.2	18
90	A stereoselective approach to peptidomimetic BACE1 inhibitors. European Journal of Medicinal Chemistry, 2013, 70, 233-247.	5.5	17

#	Article	IF	CITATIONS
91	In silico study of subtilisin-like protease 1 (SUB1) from different Plasmodium species in complex with peptidyl-difluorostatones and characterization of potent pan-SUB1 inhibitors. Journal of Molecular Graphics and Modelling, 2016, 64, 121-130.	2.4	17
92	Covalent Reversible Inhibitors of Cysteine Proteases Containing the Nitrile Warhead: Recent Advancement in the Field of Viral and Parasitic Diseases. Molecules, 2022, 27, 2561.	3.8	17
93	The Interactions of the 5-HT3 Receptor with Quipazine-Like Arylpiperazine Ligands. The Journey Track at the End of the First Decade of the Third Millennium. Current Topics in Medicinal Chemistry, 2010, 10, 504-526.	2.1	16
94	A palladium-catalyzed synthetic approach to new Huperzine A analogues modified at the pyridone ring. Tetrahedron, 2003, 59, 87-93.	1.9	15
95	Specific Targeting of Highly Conserved Residues in the HIV-1 Reverse Transcriptase Primer Grip Region. 2. Stereoselective Interaction to Overcome the Effects of Drug Resistant Mutations. Journal of Medicinal Chemistry, 2009, 52, 1224-1228.	6.4	15
96	Novel peptidomimetics as BACE-1 inhibitors: Synthesis, molecular modeling, and biological studies. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 85-89.	2.2	15
97	Identification of a novel arylpiperazine scaffold for fatty acid amide hydrolase inhibition with improved drug disposition properties. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 492-495.	2.2	15
98	Plasmodium falciparum subtilisin-like protease 1: discovery of potent difluorostatone-based inhibitors. RSC Advances, 2015, 5, 22431-22448.	3.6	15
99	Exploring clotrimazole-based pharmacophore: 3D-QSAR studies and synthesis of novel antiplasmodial agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5412-5418.	2.2	15
100	Discovery of potent nucleotide-mimicking competitive inhibitors of hepatitis C virus NS3 helicase. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2776-2779.	2.2	14
101	Development of novel multipotent compounds modulating endocannabinoid and dopaminergic systems. European Journal of Medicinal Chemistry, 2019, 183, 111674.	5.5	14
102	Malaria Chemotherapy: Recent Advances in Drug Development. Recent Patents on Anti-infective Drug Discovery, 2010, 5, 195-225.	0.8	13
103	From (+)-epigallocatechin gallate to a simplified synthetic analogue as a cytoadherence inhibitor for P. falciparum. RSC Advances, 2014, 4, 4769-4781.	3.6	13
104	Pre-clinical evaluation of a novel class of anti-cancer agents, the Pyrrolo-1, 5-benzoxazepines Journal of Cancer, 2016, 7, 2367-2377.	2.5	13
105	Activation of the Wnt Pathway by Small Peptides: Rational Design, Synthesis and Biological Evaluation. ChemMedChem, 2017, 12, 2074-2085.	3.2	13
106	Bridged bicyclic 2,3-dioxabicyclo[3.3.1]nonanes as antiplasmodial agents: Synthesis, structure-activity relationships and studies on their biomimetic reaction with Fe(II). Bioorganic Chemistry, 2019, 89, 103020.	4.1	13
107	Selective Fatty Acid Amide Hydrolase Inhibitors as Potential Novel Antiepileptic Agents. ACS Chemical Neuroscience, 2021, 12, 1716-1736.	3.5	12
108	Development of HuperTacrines as Non-Toxic, Cholinesterase Inhibitors for the Potential Treatment of Alzheimer's Disease. Mini-Reviews in Medicinal Chemistry, 2015, 15, 648-658.	2.4	12

#	Article	IF	CITATIONS
109	The Ca2+-ATPase (SERCA1) Is Inhibited by 4-Aminoquinoline Derivatives through Interference with Catalytic Activation by Ca2+, Whereas the ATPase E2 State Remains Functional. Journal of Biological Chemistry, 2011, 286, 38383-38389.	3.4	11
110	A stereoselective route to 6-substituted pyrrolo-1,5-benzoxazepinones and their analogues. Tetrahedron Letters, 2013, 54, 5387-5390.	1.4	11
111	Azetidin-2-one-based small molecules as dual hHDAC6/HDAC8 inhibitors: Investigation of their mechanism of action and impact of dual inhibition profile on cell viability. European Journal of Medicinal Chemistry, 2022, 238, 114409.	5.5	11
112	The novel pyrrolo-1,5-benzoxazepine, PBOX-21, potentiates the apoptotic efficacy of STI571 (imatinib) Tj ETQqO	0)verlock 10 ⁻ 10

113	A synthetic strategy to bridged 2,3,8-trioxabicyclo[3,3,1]nonane endoperoxides. Tetrahedron Letters, 2013, 54, 1233-1235.	1.4	10
114	Unconventional Knoevenagel-type indoles: Synthesis and cell-based studies for the identification of pro-apoptotic agents. European Journal of Medicinal Chemistry, 2015, 102, 648-660.	5.5	10
115	Dealing with schistosomiasis: Current drug discovery strategies. Annual Reports in Medicinal Chemistry, 2019, 53, 107-138.	0.9	10
116	Retinitis Pigmentosa and Retinal Degenerations: Deciphering Pathways and Targets for Drug Discovery and Development. ACS Chemical Neuroscience, 2020, 11, 2173-2191.	3.5	10
117	Total Synthesis of the Natural Chalcone Lophirone E, Synthetic Studies toward Benzofuran and Indole-Based Analogues, and Investigation of Anti-Leishmanial Activity. Molecules, 2022, 27, 463.	3.8	10
118	Induction of apoptosis in oral squamous carcinoma cells by pyrrolo-1,5-benzoxazepines. Molecular Medicine Reports, 2015, 12, 3748-3754.	2.4	8
119	Ionotropic Glutamate Receptor GluA2 in Complex with Bicyclic Pyrimidinedione-Based Compounds: When Small Compound Modifications Have Distinct Effects on Binding Interactions. ACS Chemical Neuroscience, 2020, 11, 1791-1800.	3.5	8
120	HCV-targeted Antivirals: Current Status and Future Challenges. Current Pharmaceutical Design, 2014,		0
120	20, 3445-3464.	1.9	8
120	20, 3445-3464. Polycondensed heterocycles. Part 12: An approach to the synthesis of 2-acetyl-1â€ ² -methyl-1,2,3,4-tetrahydrospiro[isoquinoline-1,4â€ ² -pyrrolidine]-2â€ ² -one. Tetrahedron, 2002, 58, 3689-3692.	1.9 1.9	8
	20, 3445-3464. Polycondensed heterocycles. Part 12: An approach to the synthesis of 2-acetyl-1â€ ² -methyl-1,2,3,4-tetrahydrospiro[isoquinoline-1,4â€ ² -pyrrolidine]-2â€ ² -one. Tetrahedron, 2002, 58,		
121	 20, 3445-3464. Polycondensed heterocycles. Part 12: An approach to the synthesis of 2-acetyl-1â€2-methyl-1,2,3,4-tetrahydrospiro[isoquinoline-1,4â€2-pyrrolidine]-2â€2-one. Tetrahedron, 2002, 58, 3689-3692. Involvement of AMP-activated protein kinase in mediating pyrrolo-1,5-benzoxazepine–induced apoptosis 	1.9	7
121 122	 20, 3445-3464. Polycondensed heterocycles. Part 12: An approach to the synthesis of 2-acetyl-1â€2-methyl-1,2,3,4-tetrahydrospiro[isoquinoline-1,4â€2-pyrrolidine]-2â€2-one. Tetrahedron, 2002, 58, 3689-3692. Involvement of AMP-activated protein kinase in mediating pyrrolo-1,5-benzoxazepine–induced apoptosis in neuroblastoma cells. Investigational New Drugs, 2016, 34, 663-676. A light in the dark: state of the art and perspectives in optogenetics and optopharmacology for 	1.9 2.6	7 7
121 122 123	 20, 3445-3464. Polycondensed heterocycles. Part 12: An approach to the synthesis of 2-acetyl-1â€2-methyl-1,2,3,4-tetrahydrospiro[isoquinoline-1,4â€2-pyrrolidine]-2â€2-one. Tetrahedron, 2002, 58, 3689-3692. Involvement of AMP-activated protein kinase in mediating pyrrolo-1,5-benzoxazepine–induced apoptosis in neuroblastoma cells. Investigational New Drugs, 2016, 34, 663-676. A light in the dark: state of the art and perspectives in optogenetics and optopharmacology for restoring vision. Future Medicinal Chemistry, 2019, 11, 463-487. Extra Virgin Olive Oil Extracts of Indigenous Southern Tuscany Cultivar Act as Anti-Inflammatory and 	1.9 2.6 2.3	7 7 7

#	Article	IF	CITATIONS
127	Siteâ€directed Mutagenesis of Key Residues Unveiled a Novel Allosteric Site on Human Adenosine Kinase for Pyrrolobenzoxa(thia)zepinone Nonâ€Nucleoside Inhibitors. Chemical Biology and Drug Design, 2016, 87, 112-120.	3.2	6
128	Design and synthesis of multifunctional microtubule targeting agents endowed with dual pro-apoptotic and anti-autophagic efficacy. European Journal of Medicinal Chemistry, 2022, 235, 114274.	5.5	6
129	Development of a practical and scalable route for the preparation of the deacetoxytubuvaline (dTuv) fragment of pretubulysin and analogs. Tetrahedron Letters, 2016, 57, 920-923.	1.4	5
130	The novel pyrrolo-1,5-benzoxazepine, PBOX-15, synergistically enhances the apoptotic efficacy of imatinib in gastrointestinal stromal tumours; suggested mechanism of action of PBOX-15. Investigational New Drugs, 2016, 34, 159-167.	2.6	5
131	A Jocic-type approach for a practical and scalable synthesis of pyrrolonaphthoxazepine (PNOX)-based potent proapoptotic agents. Tetrahedron Letters, 2018, 59, 4466-4470.	1.4	5
132	Synthesis and biological evaluation of benzhydryl-based antiplasmodial agents possessing Plasmodium falciparum chloroquine resistance transporter (PfCRT) inhibitory activity. European Journal of Medicinal Chemistry, 2021, 215, 113227.	5.5	5
133	Enantioselective binding of second generation pyrrolobenzoxazepinones to the catalytic ternary complex of HIV-1 RT wild-type and L100I and K103N drug resistant mutants. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3935-3938.	2.2	4
134	A non-toxic, reversibly released imaging probe for oral cancer that is derived from natural compounds. Scientific Reports, 2021, 11, 14069.	3.3	4
135	Design and Synthesis of New Oligopeptidic Parvulin Inhibitors. ChemMedChem, 2022, , .	3.2	3
136	Bronchoalveolar-Lavage-Derived Fibroblast Cell Line (B-LSDM7) as a New Protocol for Investigating the Mechanisms of Idiopathic Pulmonary Fibrosis. Cells, 2022, 11, 1441.	4.1	3
137	In Silico Analysis of Peptide-Based Derivatives Containing Bifunctional Warheads Engaging Prime and Non-Prime Subsites to Covalent Binding SARS-CoV-2 Main Protease (Mpro). Computation, 2022, 10, 69.	2.0	3
138	A Straightforward Approach for Engineering Efficacy and Selectivity at GPCRs. Journal of Medicinal Chemistry, 2012, 55, 6687-6688.	6.4	1
139	831: Induction of apoptosis by pyrrolo-1,5-benzoxazepines in oral squamous carcinoma cells. European Journal of Cancer, 2014, 50, S201.	2.8	1
140	Synthetic studies toward bicyclic endoperoxides presenting polar side chains. Tetrahedron Letters, 2018, 59, 4330-4333.	1.4	1
141	A novel class of oxazepine-based anti-cancer agents induces cell death in primary human CLL cells and efficiently reduces tumor growth in Eμ-TCL1 mice through the JNK/STAT4/p66Shc axis. Pharmacological Research, 2021, 174, 105965.	7.1	1
142	Polycondensed Heterocycles. Part 12. An Approach to the Synthesis of 2â€Acetylâ€1′â€methylâ€1,2,3,4â€tetrahydrospiro [isoquinolineâ€1,4′â€pyrrolidine]â€2′â€one Cher	nInform, 2	002, 33, 154-
143	Inhihition of SERCA1 by a Novel Antimalarial Compound Biophysical Journal 2010 98 505a	0.5	0