Girolamo A Casella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6449115/publications.pdf

Version: 2024-02-01

516561 552653 42 737 16 citations h-index papers

g-index 43 43 43 916 docs citations times ranked citing authors all docs

26

#	Article	IF	CITATIONS
1	Relativistic DFT Calculation of 119Sn Chemical Shifts and Coupling Constants in Tin Compounds. Journal of Chemical Theory and Computation, 2006, 2, 37-46.	2.3	83
2	Thermal behaviour and electrochemical properties of bis(trifluoromethanesulfonyl)amide and dodecatungstosilicate viologen dimers. Physical Chemistry Chemical Physics, 2012, 14, 2710.	1.3	51
3	Viologen-based ionic liquid crystals: induction of a smectic A phase by dimerisation. Physical Chemistry Chemical Physics, 2014, 16, 5048-5051.	1.3	47
4	DFT Calculation of ¹ <i>J</i> (¹¹⁹ Sn, ¹³ C) and ² <i>J</i> (¹¹⁹ Sn, ¹ H) Coupling Constants in Di- and Trimethyltin(IV) Compounds. Inorganic Chemistry, 2008, 47, 4796-4807.	1.9	46
5	Hâ^'ZSM-5 Modified Zeolite:  Quantum Chemical Models of Acidic Sites. Journal of Physical Chemistry C, 2007, 111, 13033-13043.	1.5	36
6	Ionic liquid crystals based on viologen dimers: tuning the mesomorphism by varying the conformational freedom of the ionic layer. Liquid Crystals, 2016, 43, 1161-1173.	0.9	35
7	DFT study of the interaction free energy of $\tilde{l}\in \tilde{a}\in \tilde{l}\in \tilde{b}$ complexes of fullerenes with buckybowls and viologen dimers. New Journal of Chemistry, 2011, 35, 1453.	1.4	32
8	Mesomorphic and electrooptical properties of viologens based on non-symmetric alkyl/polyfluoroalkyl functionalization and on an oxadiazolyl-extended bent core. Journal of Materials Chemistry C, 2019, 7, 7974-7983.	2.7	32
9	Anti-cancer activity of di- and tri-organotin(IV) compounds with D-(+)-Galacturonic acid on human tumor cells. Journal of Inorganic Biochemistry, 2018, 188, 102-112.	1.5	31
10	Organometallic complexes with biological molecules. XVIII. Alkyltin(IV) cephalexinate complexes: synthesis, solid state and solution phase investigations. Journal of Inorganic Biochemistry, 2004, 98, 534-546.	1.5	30
11	Fourâ€Component Relativistic DFT Calculations of ¹³ C Chemical Shifts of Halogenated Natural Substances. Chemistry - A European Journal, 2015, 21, 18834-18840.	1.7	27
12	An ultrathin suspended hydrophobic porous membrane for high-efficiency water desalination. Applied Materials Today, 2017, 9, 1-9.	2.3	27
13	A DFT study of the Karplus-type dependence of vicinal 3J(Sn–C-X-C), X=N,O,S, in organotin(iv) compounds: application to conformationally flexible systems. Organic and Biomolecular Chemistry, 2010, 8, 2711.	1.5	22
14	Diorganotin(IV) N-acetyl-l-cysteinate complexes: Synthesis, solid state, solution phase, DFT and biological investigations. Journal of Inorganic Biochemistry, 2010, 104, 750-758.	1.5	20
15	Spectroscopic signatures of the carbon buckyonions C60@C180 and C60@C240: a dispersion-corrected DFT study. Physical Chemistry Chemical Physics, 2013, 15, 18030.	1.3	19
16	A novel compound of triphenyltin(IV) with N-tert-butoxycarbonyl-l-ornithine causes cancer cell death by inducing a p53-dependent activation of the mitochondrial pathway of apoptosis. Inorganica Chimica Acta, 2017, 456, 1-8.	1.2	16
17	Karplusâ€Type Dependence of Vicinal ¹¹⁹ Snâ€ ¹³ C and ¹¹⁹ Snâ€ ¹ H Spinâ€Spin Couplings in Organotin(IV) Derivatives: A DFT Study. European Journal of Organic Chemistry, 2009, 2009, 3526-3534.	1.2	14
18	Covalently Conjugated Gold–Porphyrin Nanostructures. Nanomaterials, 2020, 10, 1644.	1.9	14

#	Article	IF	CITATIONS
19	Diorganotin(IV) complexes of D-galacturonic acid: solid-state and solution-phase structural study. Applied Organometallic Chemistry, 2003, 17, 932-939.	1.7	13
20	Synthesis, chemical characterization and biological activity of new histone acetylation/deacetylation specific inhibitors: A novel and potential approach to cancer therapy. Journal of Inorganic Biochemistry, 2013, 125, 16-25.	1.5	13
21	Comparative Experimental and Theoretical Study of the Fe L _{2,3} -Edges X-ray Absorption Spectroscopy in Three Highly Popular, Low-Spin Organoiron Complexes: [Fe(CO) ₅], [(Î- ^{5-C₅H₅)Fe(CO)(Î-4-CO)]₂, and [(Î-^{5-C₅H₅)₂Fe]. Inorganic Chemistry, 2019, 58,}}	1.9	11
22	Solution structure of R2Sn(iv)- \hat{l}^2 -N-acetyl-neuraminate (R = Me, Bu) complexes in D2O and DMSO-d6: Experimental NMR and DFT computational study. Dalton Transactions, 2007, , 1440-1446.	1.6	10
23	Structure of D-ribonic acid-dimethyltin (IV) in coordinating solvents: an experimental and DFT119Sn NMR study. Journal of Physical Organic Chemistry, 2006, 19, 874-883.	0.9	9
24	DFT calculation of NMR δ(113Cd) in cadmium complexes. Polyhedron, 2016, 117, 48-56.	1.0	9
25	Title is missing!. Journal of Chemical Crystallography, 1998, 28, 791-796.	0.5	8
26	Through-Space Spin-Spin Coupling In Acetylenic Systems. Ab Initio and DFT Calculations. International Journal of Molecular Sciences, 2003, 4, 193-202.	1.8	8
27	A DFT study of the vicinal 3J(119Sn,13C) and 3J(119Sn,1H) coupling constants inÂtrimethyl- and chlorodimethylstannyl propanoates. Journal of Organometallic Chemistry, 2013, 724, 139-146.	0.8	8
28	Direct Detection of ¹⁷ 0 in [Gd(DOTA)] ^{â^'} by NMR Spectroscopy. Chemistry - A European Journal, 2015, 21, 1955-1960.	1.7	8
29	New light on an old debate: does the RCNâ€"PtCl ₂ bond include any back-donation? RCNâ†PtCl ₂ backbonding <i>>vs.</i> the IR <i>ν</i> _{Cî€,N} blue-shift dichotomy in organonitrilesâ€"platinum(<scp>ii</scp>) complexes. A thorough density functional theory â€" energy decomposition analysis study. Dalton Transactions, 2019, 48, 12974-12985	1.6	7
30	decomposition analysis study. Dalton Transactions, 2019, 48, 12974-12985. Comparative Experimental and Theoretical Study of the C and O K-Edge X-ray Absorption Spectroscopy in Three Highly Popular, Low Spin Organoiron Complexes: [Fe(CO) (sub>5 (sub>), [(Î-(sup>5 (sub>5 (sub) +	1.9	7
31	16411-16423. Structural characterization of triorganotin(IV) complexes with sodium fusidate and DFT calculations. Journal of Organometallic Chemistry, 2010, 695, 1405-1413.	0.8	6
32	Pt(II) nitrile complexes: New insights on old complexes from a combined experimental and theoretical study. Inorganica Chimica Acta, 2017, 455, 489-504.	1,2	6
33	Spin state, electronic structure and bonding on C-scorpionate [Fe(II)Cl2(tpm)] catalyst: An experimental and computational study. Catalysis Today, 2020, 358, 403-411.	2.2	6
34	Tin(iv) catalyzed d-galacturonic acid anomerization. Dalton Transactions, 2008, , 596-601.	1.6	5
35	Synthesis, chemical characterization and preliminary in vitro antitumor activity evaluation of new ruthenium(II) complexes with sugar derivatives. Polyhedron, 2011, 30, 1671-1679.	1.0	5

Synthesis and structural investigations on R₂ Sn(IV)â€≺scp>D</scp>â€aldonic acid complexes
(R = methyl; butyl). Their effect on a new toxicity test organism, <i>Liza saliens</i>/i> (Osteichthyes,) Tj ETQq0 0 0 rg ₹7/Overlo€k 10 Tf 50

#	Article	IF	Citations
37	Equilibria involved in the diorganotin(IV) and triorganotin(IV) phosphomycin interaction in aqueous solution. Applied Organometallic Chemistry, 2007, 21, 455-461.	1.7	3
38	Reaction between Indazole and Pd-Bound Isocyanidesâ€"A Theoretical Mechanistic Study. Molecules, 2018, 23, 2942.	1.7	3
39	A DFT mechanistic study of the synthesis of trans-Z,Z-[PtIICl(NH3){HNÂ=ÂC(NH2)Me}2]Cl from addition of NH3 to trans-[PtIICl2(N CMe)2]. Inorganica Chimica Acta, 2020, 511, 119847.	1.2	2
40	cis-[(η5-C5H5)Fe(η1-CO)(Î ¹ /4-CO)]2, the poor relative between cis and trans tautomers. A theoretical study of the gas-phase Fe L3-edge and C and O K-edge XAS of trans-/cis-[(η5-C5H5)Fe(η1-CO)(Î ¹ /4-CO)]2. Physical Chemistry Chemical Physics, 2021, 23, 24661-24668.	1.3	1
41	Structural investigations on diorganotin and triorganotin(IV) phosphomycin derivatives. Inorganica Chimica Acta, 2008, 361, 1754-1762.	1.2	O
42	Donation and back-donation in cis- and trans-[(\hat{i} -5-C5H5)Fe(\hat{i} -1-CO)(\hat{i} -4-CO)]2 tautomers: Which relative is more generous? An ETS-NOCV bond analysis. Inorganica Chimica Acta, 2022, 536, 120897.	1.2	0