Craig C Lundstrom

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6448815/craig-c-lundstrom-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

76	3,010 citations	34	53
papers		h-index	g-index
79	3,371 ext. citations	6.9	5.24
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
76	Iron Stable Isotopes in Bulk Soil and Sequential Extracted Fractions Trace Fe Redox Cycling in Paddy Soils. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 8143-8150	5.7	3
75	Red Earth, Green Glass, and Compositional Data: A New Procedure for Solid-State Elemental Characterization, Source Discrimination, and Provenience Analysis of Ochres. <i>Journal of Archaeological Method and Theory</i> , 2020 , 27, 930-970	2.8	4
74	Continuously Changing Quartz-Albite Saturated Melt Compositions to 330 °C With Application to Heat Flow and Geochemistry of the Ocean Crust. <i>Journal of Geophysical Research: Solid Earth</i> , 2020 , 125, e2019JB017654	3.6	2
73	Formation of the Mantoverde iron oxide-copper-gold (IOCG) deposit, Chile: insights from Fe and O stable isotopes and comparisons with iron oxide-apatite (IOA) deposits. <i>Mineralium Deposita</i> , 2020 , 55, 1489-1504	4.8	16
7 2	Microbial U Isotope Fractionation Depends on the U(VI) Reduction Rate. <i>Environmental Science</i> & Environmental Science & Environmental & Envir	10.3	12
71	Forensic isoscapes based on intra-individual temporal variation of O and Pb/Pb in human teeth. <i>Forensic Sciences Research</i> , 2020 , 6, 42-52	3.6	2
70	MC-ICP-MS analyses of tin isotopes in Roman-era bronze coins reveal temporal and spatial variation. <i>Archaeometry</i> , 2019 , 61, 891-905	1.6	5
69	Field Application of U/U Measurements To Detect Reoxidation and Mobilization of U(IV). <i>Environmental Science & Environmental </i>	10.3	13
68	Modification of the Western Gondwana craton by plumelithosphere interaction. <i>Nature Geoscience</i> , 2018 , 11, 203-210	18.3	61
67	A self-consistent topElown model for differentiation in bimodal suites: application to the Sonju Lake IntrusionEinland granite system (MN). <i>International Geology Review</i> , 2017 , 59, 1451-1470	2.3	1
66	Iron isotopic evolution during fractional crystallization of the uppermost Bushveld Complex layered mafic intrusion. <i>Geochemistry, Geophysics, Geosystems</i> , 2017 , 18, 956-972	3.6	17
65	U-series disequilibria of trachyandesites from minor volcanic centers in the Central Andes. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 215, 92-104	5.5	2
64	Iron and Oxygen Isotope Signatures of the Pea Ridge and Pilot Knob Magnetite-Apatite Deposits, Southeast Missouri, USA. <i>Economic Geology</i> , 2016 , 111, 2033-2044	4.3	40
63	Possible Earthquakes Recorded in Stalagmites from a Cave in South-Central Indiana. <i>Bulletin of the Seismological Society of America</i> , 2016 , 106, 2364-2375	2.3	6
62	Spatially controlled Fe and Si isotope variations: an alternative view on the formation of the Torres del Paine pluton. <i>Contributions To Mineralogy and Petrology</i> , 2016 , 171, 1	3.5	8
61	Uranium Isotopic Fractionation Induced by U(VI) Adsorption onto Common Aquifer Minerals. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	33
60	Silicic Magmatism and the Volcanic Plutonic Connection. Elements, 2016, 12, 91-96	3.8	48

(2012-2016)

59	FeD stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 177, 94-104	5.5	56
58	The role of thermal migration and low-temperature melt in granitoid formation: can granite form without rhyolitic melt?. <i>International Geology Review</i> , 2016 , 58, 371-388	2.3	10
57	231Pa systematics in postglacial volcanic rocks from Iceland. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 185, 129-140	5.5	3
56	Evaluation of the efficacy of spatiotemporal Pb isoscapes for provenancing of human remains. <i>Forensic Science International</i> , 2016 , 261, 83-92	2.6	25
55	Multiple thermo-erosional episodes during the past six millennia: Implications for the response of Arctic permafrost to climate change. <i>Geology</i> , 2016 , 44, 439-442	5	10
54	Low temperature equilibrium isotope fractionation and isotope exchange kinetics between U(IV) and U(VI). <i>Geochimica Et Cosmochimica Acta</i> , 2015 , 158, 262-275	5.5	22
53	Mid-ocean ridge basalt generation along the slow-spreading, South Mid-Atlantic Ridge (5🛮 1°S): Inferences from 238U🗸30Th 🗸26Ra disequilibria. <i>Geochimica Et Cosmochimica Acta</i> , 2015 , 169, 152-166	5.5	11
52	Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. <i>Geology</i> , 2015 , 43, 591-594	5	121
51	Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen. <i>Geochimica Et Cosmochimica Acta</i> , 2015 , 150, 160-170	5.5	56
50	Formation of the PGE Reef Horizon in the Sonju Lake Layered Mafic Intrusion by Thermal Migration Zone Refining. <i>Economic Geology</i> , 2014 , 109, 1257-1269	4.3	2
49	Coupled iron, sulfur and carbon isotope evidences for arsenic enrichment in groundwater. <i>Journal of Hydrology</i> , 2014 , 519, 414-422	6	50
48	Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates. <i>Geochimica Et Cosmochimica Acta</i> , 2014 , 136, 100-113	5.5	89
47	Fe and Si isotope variations at Cedar Butte volcano; insight into magmatic differentiation. <i>Earth and Planetary Science Letters</i> , 2014 , 405, 169-179	5.3	44
46	Pathways of arsenic from sediments to groundwater in the hyporheic zone: Evidence from an iron isotope study. <i>Journal of Hydrology</i> , 2014 , 511, 509-517	6	24
45	B iblicallbronze coins: new insights into their timing and attribution using copper and lead isotopes. <i>Archaeological and Anthropological Sciences</i> , 2013 , 5, 287-298	1.8	6
44	Chemical and physical weathering in south Patagonian rivers: A combined Sr DB e isotope approach. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 101, 173-190	5.5	5
43	No measurable changes in (238)U/(235)U due to desorption-adsorption of U(VI) from groundwater at the Rifle, Colorado, integrated field research challenge site. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	40
42	Anatomically modern human in Southeast Asia (Laos) by 46 ka. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 14375-80	11.5	131

41	Isotope fractionation by thermal diffusion in silicate melts. <i>Physical Review Letters</i> , 2012 , 108, 065901	7.4	39
40	The effects of climate change on speleogenesis and karstification since the penultimate glaciation in southwestern Illinois inkhole plain. <i>Carbonates and Evaporites</i> , 2012 , 27, 87-94	1.3	5
39	Lead - radium dating provides a framework for coordinating age estimation of Patagonian toothfish (Dissostichus eleginoides) between fishing areas. <i>Marine and Freshwater Research</i> , 2011 , 62, 781	2.2	10
38	U-series disequilibria in Kicklim Jenny submarine volcano lavas: A new view of time-scales of magmatism in convergent margins. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 195-212	5.5	16
37	Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 3318-3334	5.5	134
36	The major ion, $24/40$ Ca, $4/42$ Ca, and $6/24$ Mg geochemistry of granite weathering at pH = 1 and T = 25 °C: power-law processes and the relative reactivity of minerals. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 6004-6026	5.5	104
35	Huang et al. reply. <i>Nature</i> , 2011 , 472, E2-E3	50.4	9
34	Age estimation and leadfadium dating of Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea. <i>Polar Biology</i> , 2011 , 34, 329-338	2	25
33	Isotope fractionation in silicate melts by thermal diffusion. <i>Nature</i> , 2010 , 464, 396-400	50.4	144
32	Uranium 238U/235U isotope ratios as indicators of reduction: results from an in situ biostimulation experiment at Rifle, Colorado, U.S.A. <i>Environmental Science & Environmental Science & Environment</i>	10.3	81
31	Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota. <i>Earth and Planetary Science Letters</i> , 2010 , 297, 446-452	5.3	60
30	Trace element partitioning between high-An plagioclase and basaltic to basaltic andesite melt at 1 atmosphere pressure. <i>Lithos</i> , 2010 , 118, 82-94	2.9	39
29	Major Earthquakes Recorded by Speleothems in Midwestern U.S. Caves. <i>Bulletin of the Seismological Society of America</i> , 2009 , 99, 2147-2154	2.3	14
28	Variations in 238U/235U in uranium ore deposits: Isotopic signatures of the U reduction process?. <i>Geology</i> , 2009 , 37, 611-614	5	86
27	Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS. <i>Chemical Geology</i> , 2009 , 268, 15-23	4.2	89
26	Time-scales for magmatic differentiation at the SnaefellsjRull central volcano, western Iceland: Constraints from UIIhPaRa disequilibria in post-glacial lavas. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 1120-1144	5.5	27
25	Hypothesis for the origin of convergent margin granitoids and Earth∃ continental crust by thermal migration zone refining. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 5709-5729	5.5	46
24	A Mid[late Quaternary loesspaleosol record in Simmons Farm in southern Illinois, USA. <i>Quaternary Science Reviews</i> , 2009 , 28, 93-106	3.9	14

(2003-2009)

23	Natural and experimental constraints on formation of the continental crust based on niobiumEantalum fractionation. <i>International Geology Review</i> , 2009 , 51, 473-501	2.3	51
22	An Inter-Laboratory Assessment of the Thorium Isotopic Composition of Synthetic and Rock Reference Materials. <i>Geostandards and Geoanalytical Research</i> , 2008 , 32, 65-91		122
21	The effect of assimilation, fractional crystallization, and ageing on U-series disequilibria in subduction zone lavas. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 4136-4145	5.5	12
20	Pressure-induced magnetic transition and sound velocities of Fe3C: Implications for carbon in the Earth's inner core. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	58
19	231Pa excesses in arc volcanic rocks: Constraint on melting rates at convergent margins. <i>Geology</i> , 2007 , 35, 1007	5	24
18	Age validation of canary rockfish (Sebastes pinniger) using two independent otolith techniques: lead-radium and bomb radiocarbon dating. <i>Marine and Freshwater Research</i> , 2007 , 58, 531	2.2	22
17	UITh Ra disequilibria and the time scale of fluid transfer and andesite differentiation at Arenal volcano, Costa Rica (1968 2003). <i>Journal of Volcanology and Geothermal Research</i> , 2006 , 157, 147-165	2.8	23
16	Investigating the origin of anorthitic plagioclase through a combination of experiments and natural observations. <i>Journal of Volcanology and Geothermal Research</i> , 2006 , 157, 202-221	2.8	18
15	Phase equilibrium experiments at 0.5 GPa and 1100🛮 300 °C on a basaltic andesite from Arenal volcano, Costa Rica. <i>Journal of Volcanology and Geothermal Research</i> , 2006 , 157, 222-235	2.8	10
14	Experimentally determined uranium isotope fractionation during reduction of hexavalent U by bacteria and zero valent iron. <i>Environmental Science & Environmental Science & En</i>	10.3	48
13	Plumefidge interaction studied at the Galpagos spreading center: Evidence from 226Ral 30Th 38U and 231Pal 35U isotopic disequilibria. <i>Earth and Planetary Science Letters</i> , 2005 , 234, 165-187	5.3	35
12	Observations of Li isotopic variations in the Trinity Ophiolite: Evidence for isotopic fractionation by diffusion during mantle melting. <i>Geochimica Et Cosmochimica Acta</i> , 2005 , 69, 735-751	5.5	142
11	Geochemistry of speleothem records from southern Illinois: Development of (234U)/(238U) as a proxy for paleoprecipitation. <i>Chemical Geology</i> , 2005 , 221, 1-20	4.2	37
10	DiffusionEeaction in a thermal gradient: Implications for the genesis of anorthitic plagioclase, high alumina basalt and igneous mineral layering. <i>Earth and Planetary Science Letters</i> , 2005 , 237, 829-854	5.3	21
9	Bomb radiocarbon and lead - radium disequilibria in otoliths of bocaccio rockfish (Sebastes paucispinis): a determination of age and longevity for a difficult-to-age fish. <i>Marine and Freshwater Research</i> , 2005 , 56, 517	2.2	34
8	Climate change in southern Illinois, USA, based on the age and 🛮 3C of organic matter in cave sediments. <i>Quaternary Research</i> , 2004 , 61, 301-313	1.9	29
7	An experimental investigation of the diffusive infiltration of alkalis into partially molten peridotite: Implications for mantle melting processes. <i>Geochemistry, Geophysics, Geosystems</i> , 2003 , 4, n/a-n/a	3.6	33
6	U-series disequilibria in volcanic rocks from the Canary Islands: Plume versus lithospheric melting. <i>Geochimica Et Cosmochimica Acta</i> , 2003 , 67, 4153-4177	5.5	85

5	Uranium-series Disequilibria in Mid-ocean Ridge Basalts: Observations and Models of Basalt Genesis. <i>Reviews in Mineralogy and Geochemistry</i> , 2003 , 52, 175-214	7.1	37
4	Rapid diffusive infiltration of sodium into partially molten peridotite. <i>Nature</i> , 2000 , 403, 527-30	50.4	54
3	Models of U-series disequilibria generation in MORB: the effects of two scales of melt porosity. <i>Physics of the Earth and Planetary Interiors</i> , 2000 , 121, 189-204	2.3	46
2	Application of an ion-ellange separation technique and thermal ionization mass spectrometry to 226Ra determination in otoliths for radiometric age determination of long-lived fishes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1999 , 56, 1329-1338	2.4	26
1	Mantle Melting and Basalt Extraction by Equilibrium Porous Flow. <i>Science</i> , 1995 , 270, 1958-1961	33.3	123