
## Phattananawee Nalaoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6448739/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Synthesis of bacteriochlorins bearing diverse β-substituents. New Journal of Chemistry, 2022, 46, 5534-5555.                                                                                                                                      | 2.8 | 5         |
| 2  | Solidâ€State Fluorophores with Combined Excitedâ€State Intramolecular Proton<br>Transferâ€Aggregationâ€Induced Emission as Efficient Emitters for Electroluminescent Devices. Advanced<br>Photonics Research, 2022, 3, .                          | 3.6 | 8         |
| 3  | Chrysene and triphenylene based-fluorophores as non-doped deep blue emitters for triplet-triplet<br>annihilation organic light-emitting diodes. Journal of Luminescence, 2022, 248, 118926.                                                       | 3.1 | 6         |
| 4  | Deep-blue high-efficiency triplet–triplet annihilation organic light-emitting diodes using<br>hydroxyl-substituted tetraphenylimidazole-functionalized anthracene fluorescent emitters. Journal<br>of Materials Chemistry C, 2022, 10, 9968-9979. | 5.5 | 8         |
| 5  | Hydroxyâ€Tetraphenylimidazole Derivatives as Efficient Blue Emissive Materials for Electroluminescent<br>Devices. Chemistry - an Asian Journal, 2022, 17, .                                                                                       | 3.3 | 3         |
| 6  | Intramolecular hydrogen bond – enhanced electroluminescence performance of hybridized local and<br>charge transfer (HLCT) excited-state blue-emissive materials. Journal of Materials Chemistry C, 2021, 9,<br>497-507.                           | 5.5 | 24        |
| 7  | Rational design of anthracene-based deep-blue emissive materials for highly efficient deep-blue organic<br>light-emitting diodes with CIEy ≤0.05. Dyes and Pigments, 2021, 184, 108874.                                                           | 3.7 | 18        |
| 8  | Unique dual fluorescence emission in the solid state from a small molecule based on<br>phenanthrocarbazole with an AIE luminogen as a single-molecule white-light emissive material.<br>Materials Chemistry Frontiers, 2021, 5, 2361-2372.        | 5.9 | 11        |
| 9  | Self-absorption-free excited-state intramolecular proton transfer (ESIPT) emitters for high brightness and luminous efficiency organic fluorescent electroluminescent devices. Materials Chemistry Frontiers, 2021, 5, 6212-6225.                 | 5.9 | 7         |
| 10 | Synthesis, Characterization, and Physical Properties of Pyreneâ€Naphthalimide Derivatives as Emissive<br>Materials for Electroluminescent Devices. European Journal of Organic Chemistry, 2021, 2021,<br>2402-2410.                               | 2.4 | 8         |
| 11 | A Dimeric Ï€â€Stacking of Anthracene Inducing Efficiency Enhancement in Solidâ€State Fluorescence and<br>Nonâ€Doped Deepâ€Blue Triplet–Triplet Annihilation Órganic Lightâ€Emitting Diodes. Advanced Optical<br>Materials, 2021, 9, 2100500.      | 7.3 | 38        |
| 12 | Twisted Phenanthro[9,10â€d]imidazole Derivatives as Nonâ€doped Emitters for Efficient<br>Electroluminescent Devices with Ultraâ€Deep Blue Emission and High Exciton Utilization Efficiency.<br>Chemistry - an Asian Journal, 2021, 16, 2328-2337. | 3.3 | 16        |
| 13 | Imidazole-based solid-state fluorophores with combined ESIPT and AIE features as self-absorption-free non-doped emitters for electroluminescent devices. Dyes and Pigments, 2021, 193, 109488.                                                    | 3.7 | 38        |
| 14 | A simple strategy to enhance the sensitivity of fluorescent sensor-based CdS quantum dots by using a surfactant for Hg2+ detection. Analytical Methods, 2021, 13, 4069-4078.                                                                      | 2.7 | 0         |
| 15 | Rational Design of Chryseneâ€Based Hybridized Local and Chargeâ€Transfer Molecules as Efficient<br>Nonâ€Doped Deepâ€Blue Emitters for Simple Structured Electroluminescent Devices. Chemistry - an Asian<br>Journal, 2021, , .                    | 3.3 | 8         |
| 16 | Effect of thiophene/furan substitution on organic field effect transistor properties of arylthiadiazole based organic semiconductors. Journal of Materials Chemistry C, 2020, 8, 17297-17306.                                                     | 5.5 | 13        |
| 17 | Fourfold alkyl wrapping of a copper(II) porphyrin thwarts macrocycle π–π stacking in a compact<br>supramolecular package. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 647-654.                                              | 0.5 | 2         |
| 18 | Improvement of D–π–A organic dye-based dye-sensitized solar cell performance by simple<br>triphenylamine donor substitutions on the π-linker of the dye. Materials Chemistry Frontiers, 2017, 1,<br>1059-1072.                                    | 5.9 | 40        |

| #  | Article                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Separation of Etiracetam Enantiomers Using Enantiospecific Cocrystallization with 2-Chloromandelic Acid. ACS Omega, 0, , . | 3.5 | 3         |