List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/644857/publications.pdf Version: 2024-02-01

SA B CHSTAFSSON

#	Article	IF	CITATIONS
1	Mitochondrial Dysfunction and Mitophagy: Physiological Implications in Cardiovascular Health. , 2022, , 197-217.		0
2	Mitochondrial quality surveillance: mitophagy in cardiovascular health and disease. American Journal of Physiology - Cell Physiology, 2022, 322, C218-C230.	2.1	22
3	Mcl-1 Differentially Regulates Autophagy in Response to Changes in Energy Status and Mitochondrial Damage. Cells, 2022, 11, 1469.	1.8	6
4	The role of mitochondrial fission in cardiovascular health and disease. Nature Reviews Cardiology, 2022, 19, 723-736.	6.1	62
5	Cardiolipin Remodeling Defects Impair Mitochondrial Architecture and Function in a Murine Model of Barth Syndrome Cardiomyopathy. Circulation: Heart Failure, 2021, 14, e008289.	1.6	17
6	Isolation of Rab5-positive endosomes reveals a new mitochondrial degradation pathway utilized by BNIP3 and Parkin. Small GTPases, 2020, 11, 69-76.	0.7	28
7	Mitochondria and autophagy in adult stem cells: proliferate or differentiate. Journal of Muscle Research and Cell Motility, 2020, 41, 355-362.	0.9	10
8	Protective Function of MCUb in Postischemic Remodeling Getting at the Heart of the Calcium Control Conundrum. Circulation Research, 2020, 127, 391-393.	2.0	2
9	Mcl-1-mediated mitochondrial fission protects against stress but impairs cardiac adaptation to exercise. Journal of Molecular and Cellular Cardiology, 2020, 146, 109-120.	0.9	17
10	Loss of Parkin Results in Altered Muscle Stem Cell Differentiation during Regeneration. International Journal of Molecular Sciences, 2020, 21, 8007.	1.8	12
11	Autophagy: A savior in cigarette smoke-induced cardiac injury. Journal of Molecular and Cellular Cardiology, 2020, 148, 120-121.	0.9	1
12	Mitochondrial Quality Control and Cellular Proteostasis: Two Sides of the Same Coin. Frontiers in Physiology, 2020, 11, 515.	1.3	45
13	The Aging Heart: Mitophagy at the Center of Rejuvenation. Frontiers in Cardiovascular Medicine, 2020, 7, 18.	1.1	36
14	Aging is associated with a decline in Atg9bâ€mediated autophagosome formation and appearance of enlarged mitochondria in the heart. Aging Cell, 2020, 19, e13187.	3.0	46
15	Nuclear Parkin Activates the ERRα Transcriptional Program and Drives Widespread Changes in Gene Expression Following Hypoxia. Scientific Reports, 2020, 10, 8499.	1.6	14
16	Hypoxia Prevents Mitochondrial Dysfunction and Senescence in Human c-Kit+ Cardiac Progenitor Cells. Stem Cells, 2019, 37, 555-567.	1.4	41
17	BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation. Autophagy, 2019, 15, 1182-1198.	4.3	197
18	Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process. Physiological Reviews, 2019, 99, 853-892.	13.1	145

#	Article	IF	CITATIONS
19	Multiple recycling routes: Canonical vs. non-canonical mitophagy in the heart. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 797-809.	1.8	18
20	Parkin does not prevent accelerated cardiac aging in mitochondrial DNA mutator mice. JCI Insight, 2019, 4, .	2.3	39
21	Regulating Renewable Energy. Circulation Research, 2018, 122, 649-651.	2.0	20
22	Autophagy—A key pathway for cardiac health and longevity. Acta Physiologica, 2018, 223, e13074.	1.8	37
23	Balancing autophagy for a healthy heart. Current Opinion in Physiology, 2018, 1, 21-26.	0.9	14
24	Mesenchymal Stem Cell-Mediated Autophagy Inhibition. Circulation Research, 2018, 123, 518-520.	2.0	5
25	A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nature Communications, 2017, 8, 14050.	5.8	154
26	Beyond Mitophagy. Circulation Research, 2017, 120, 1234-1236.	2.0	17
27	Decline in cellular function of aged mouse câ€kit ⁺ cardiac progenitor cells. Journal of Physiology, 2017, 595, 6249-6262.	1.3	25
28	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
29	NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell, 2016, 164, 896-910.	13.5	859
30	Evaluating mitochondrial autophagy in the mouse heart. Journal of Molecular and Cellular Cardiology, 2016, 92, 134-139.	0.9	32
31	Staying young at heart: autophagy and adaptation to cardiac aging. Journal of Molecular and Cellular Cardiology, 2016, 95, 78-85.	0.9	42
32	PINK1 Is Dispensable for Mitochondrial Recruitment of Parkin and Activation of Mitophagy in Cardiac Myocytes. PLoS ONE, 2015, 10, e0130707.	1.1	79
33	Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy. Cardiovascular Research, 2015, 105, 160-170.	1.8	53
34	Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells. Journal of Biological Chemistry, 2015, 290, 13935-13947.	1.6	26
35	Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts. Circulation Research, 2015, 117, 346-351.	2.0	172
36	Therapeutic Targeting of Autophagy. Circulation Research, 2015, 116, 489-503.	2.0	113

#	Article	IF	CITATIONS
37	Mending a broken heart: the role of mitophagy in cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H183-H192.	1.5	97
38	Mitophagy and heart failure. Journal of Molecular Medicine, 2015, 93, 253-262.	1.7	90
39	Accumulation of Mitochondrial DNA Mutations Disrupts Cardiac Progenitor Cell Function and Reduces Survival. Journal of Biological Chemistry, 2015, 290, 22061-22075.	1.6	24
40	Cellular redox status determines sensitivity to BNIP3-mediated cell death in cardiac myocytes. American Journal of Physiology - Cell Physiology, 2015, 308, C983-C992.	2.1	11
41	Unbreak My Heart: Targeting Mitochondrial Autophagy in Diabetic Cardiomyopathy. Antioxidants and Redox Signaling, 2015, 22, 1527-1544.	2.5	55
42	Harnessing the Power of Integrated Mitochondrial Biology and Physiology. Circulation Research, 2015, 117, 234-238.	2.0	9
43	Recent progress in research on molecular mechanisms of autophagy in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H259-H268.	1.5	30
44	Metabolic Dysfunction Consistent With Premature Aging Results From Deletion of Pim Kinases. Circulation Research, 2014, 115, 376-387.	2.0	49
45	Autophagy and mitophagy in the myocardium: therapeutic potential and concerns. British Journal of Pharmacology, 2014, 171, 1907-1916.	2.7	60
46	Mitochondrial quality control in the myocardium: Cooperation between protein degradation and mitophagy. Journal of Molecular and Cellular Cardiology, 2014, 75, 122-130.	0.9	81
47	Cardiomyocyte health: adapting to metabolic changes through autophagy. Trends in Endocrinology and Metabolism, 2014, 25, 156-164.	3.1	63
48	Cell death in the myocardium: My heart won't go on. IUBMB Life, 2013, 65, 651-656.	1.5	123
49	Parkin Protein Deficiency Exacerbates Cardiac Injury and Reduces Survival following Myocardial Infarction. Journal of Biological Chemistry, 2013, 288, 915-926.	1.6	383
50	Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes. Communicative and Integrative Biology, 2013, 6, e24511.	0.6	92
51	Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Genes and Development, 2013, 27, 1365-1377.	2.7	221
52	MCL1 is critical for mitochondrial function and autophagy in the heart. Autophagy, 2013, 9, 1902-1903.	4.3	26
53	Mitochondrial Autophagy. Circulation Journal, 2013, 77, 2449-2454.	0.7	44

#	Article	IF	CITATIONS
55	Overexpression of Bnip3 in the Myocardium Leads to Mitochondrial Dysfunction and Enhanced Mitochondrial Autophagy. FASEB Journal, 2013, 27, 1209.6.	0.2	0
56	Microtubule-associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy. Journal of Biological Chemistry, 2012, 287, 19094-19104.	1.6	595
57	Regulation of Autophagy by Metabolic and Stress Signaling Pathways in the Heart. Journal of Cardiovascular Pharmacology, 2012, 60, 118-124.	0.8	32
58	Mitochondria and Mitophagy. Circulation Research, 2012, 111, 1208-1221.	2.0	662
59	New roles for mitochondria in cell death in the reperfused myocardium. Cardiovascular Research, 2012, 94, 190-196.	1.8	121
60	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
61	Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death and Differentiation, 2011, 18, 721-731.	5.0	216
62	Bnip3 as a Dual Regulator of Mitochondrial Turnover and Cell Death in the Myocardium. Pediatric Cardiology, 2011, 32, 267-274.	0.6	83
63	Bnip3-mediated defects in oxidative phosphorylation promote mitophagy. Autophagy, 2011, 7, 775-777.	4.3	40
64	Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1924-H1931.	1.5	323
65	Juvenile Exposure to Anthracyclines Impairs Cardiac Progenitor Cell Function and Vascularization Resulting in Greater Susceptibility to Stress-Induced Myocardial Injury in Adult Mice. Circulation, 2010, 121, 675-683.	1.6	176
66	Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy, 2010, 6, 855-862.	4.3	194
67	Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy, 2010, 6, 462-472.	4.3	114
68	Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. Journal of Molecular and Cellular Cardiology, 2010, 48, 1146-1156.	0.9	86
69	Role of apoptosis in cardiovascular disease. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 536-548.	2.2	290
70	Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA. Basic Research in Cardiology, 2009, 104, 157-167.	2.5	84
71	Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2025-H2031.	1.5	149
72	Bcl-2 family members and apoptosis, taken to heart. American Journal of Physiology - Cell Physiology, 2007, 292, C45-C51.	2.1	245

#	Article	IF	CITATIONS
73	Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochemical Journal, 2007, 405, 407-415.	1.7	183
74	Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death and Differentiation, 2007, 14, 146-157.	5.0	555
75	Autophagy as a Protective Response to Bnip3-Mediated Apoptotic Signaling in the Heart. Autophagy, 2006, 2, 307-309.	4.3	101
76	TAT-mediated protein transduction: delivering biologically active proteins to the heart. Methods in Molecular Medicine, 2005, 112, 81-90.	0.8	10
77	Apoptosis Repressor with Caspase Recruitment Domain Protects against Cell Death by Interfering with Bax Activation. Journal of Biological Chemistry, 2004, 279, 21233-21238.	1.6	156
78	Lysophosphatidic acid induces hypertrophy of neonatal cardiac myocytes via activation of Gi and Rho. Journal of Molecular and Cellular Cardiology, 2004, 36, 481-493.	0.9	60
79	Mechanisms of Apoptosis in the Heart. Journal of Clinical Immunology, 2003, 23, 447-459.	2.0	123
80	TAT Protein Transduction Into Isolated Perfused Hearts. Circulation, 2002, 106, 735-739.	1.6	120