Luis F Melo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6448332/publications.pdf

Version: 2024-02-01

117625 123424 4,186 97 34 61 h-index citations g-index papers 97 97 97 4922 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Overview on the developments of microbial fuel cells. Biochemical Engineering Journal, 2013, 73, 53-64.	3.6	301
2	Surface modifications for antimicrobial effects in the healthcare setting: a critical overview. Journal of Hospital Infection, 2018, 99, 239-249.	2.9	225
3	Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon. Water Research, 2002, 36, 469-481.	11.3	217
4	Biofouling in water systems. Experimental Thermal and Fluid Science, 1997, 14, 375-381.	2.7	172
5	Effect of flow regime on the architecture of aPseudomonas fluorescens biofilm. Biotechnology and Bioengineering, 2002, 78, 164-171.	3.3	156
6	Biofilm formation: Hydrodynamic effects on internal diffusion and structure. Biofouling, 1993, 7, 67-80.	2.2	152
7	Modified stainless steel surfaces targeted to reduce fouling – Evaluation of fouling by milk components. Journal of Food Engineering, 2007, 80, 1176-1187.	5.2	120
8	Dynamics of drinking water biofilm in flow/non-flow conditions. Water Research, 2007, 41, 551-562.	11.3	118
9	Flow cell hydrodynamics and their effects on < i>E. coli < l i > biofilm formation under different nutrient conditions and turbulent flow. Biofouling, 2011, 27, 1-11.	2.2	118
10	Modified stainless steel surfaces targeted to reduce foulingâ€"â€"surface characterization. Journal of Food Engineering, 2004, 64, 63-79.	5.2	115
11	Competition betweenNitrospira spp. andNitrobacter spp. in nitrite-oxidizing bioreactors. Biotechnology and Bioengineering, 2006, 95, 169-175.	3.3	115
12	Physiological changes induced by the quaternary ammonium compound benzyldimethyldodecylammonium chloride on Pseudomonas fluorescens. Journal of Antimicrobial Chemotherapy, 2011, 66, 1036-1043.	3.0	105
13	A 1D mathematical model for a microbial fuel cell. Energy, 2013, 61, 463-471.	8.8	86
14	Online Biofilm Monitoring. Reviews in Environmental Science and Biotechnology, 2003, 2, 269-283.	8.1	81
15	Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Research International, 2020, 127, 108754.	6.2	73
16	The effects of ferulic and salicylic acids on Bacillus cereus and Pseudomonas fluorescens single- and dual-species biofilms. International Biodeterioration and Biodegradation, 2014, 86, 42-51.	3.9	70
17	<i>Escherichia coli</i> adhesion, biofilm development and antibiotic susceptibility on biomedical materials. Journal of Biomedical Materials Research - Part A, 2015, 103, 1414-1423.	4.0	68
18	Calcium phosphate deposition from simulated milk ultrafiltrate on different stainless steel-based surfaces. International Dairy Journal, 2006, 16, 81-87.	3.0	65

#	Article	IF	CITATIONS
19	Impact of polymicrobial biofilms in catheter-associated urinary tract infections. Critical Reviews in Microbiology, 2017, 43, 423-439.	6.1	63
20	Fluorene and phenanthrene uptake byPseudomonas putida ATCC 17514: Kinetics and physiological aspects. Biotechnology and Bioengineering, 2005, 90, 281-289.	3.3	59
21	The effect of shear stress on the formation and removal of Bacillus cereus biofilms. Food and Bioproducts Processing, 2015, 93, 242-248.	3.6	58
22	Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. Journal of Applied Microbiology, 2006, 101, 1087-1095.	3.1	51
23	The influence of nickel on the adhesion ability of Desulfovibrio desulfuricans. Colloids and Surfaces B: Biointerfaces, 2005, 46, 127-133.	5.0	46
24	The effect of glucose concentration and shaking conditions on Escherichia coli biofilm formation in microtiter plates. Chemical Engineering Science, 2013, 94, 192-199.	3.8	45
25	Using nanovibrations to monitor biofouling. Biotechnology and Bioengineering, 2008, 99, 1407-1415.	3.3	44
26	Simulation of stirred yoghurt processing in plate heat exchangers. Journal of Food Engineering, 2005, 69, 281-290.	5.2	43
27	The effect of citrate on calcium phosphate deposition from simulated milk ultrafiltrate (SMUF) solution. Journal of Food Engineering, 2006, 73, 379-387.	5.2	43
28	The effects of surface properties on Escherichia coli adhesion are modulated by shear stress. Colloids and Surfaces B: Biointerfaces, 2014, 123, 1-7.	5.0	43
29	Heat transfer and rheology of stirred yoghurt during cooling in plate heat exchangers. Journal of Food Engineering, 2003, 57, 179-187.	5.2	40
30	Influence of Flow Velocity on the Characteristics of $\langle i \rangle$ Pseudomonas fluorescens $\langle i \rangle$ Biofilms. Journal of Environmental Engineering, ASCE, 2016, 142, .	1.4	40
31	Effect of low concentrations of synthetic surfactants on polycyclic aromatic hydrocarbons (PAH) biodegradation. International Biodeterioration and Biodegradation, 2013, 83, 48-55.	3.9	37
32	The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds. International Journal of Food Science, 2013, 2013, 1-9.	2.0	36
33	Influence of medium composition on the characteristics of a denitrifying biofilm formed by Alcaligenes denitrificans in a fluidised bed reactor. Process Biochemistry, 2002, 37, 837-845.	3.7	35
34	Influence of flow rate variation on the development of Escherichia coli biofilms. Bioprocess and Biosystems Engineering, 2013, 36, 1787-1796.	3.4	35
35	Mass transfer coefficients within anaerobic biofilms: effects of external liquid velocity. Water Research, 1999, 33, 3673-3678.	11.3	34
36	Calcium phosphate fouling on TiN-coated stainless steel surfaces: Role of ions and particles. Chemical Engineering Science, 2007, 62, 3821-3831.	3.8	34

#	Article	IF	CITATIONS
37	Protein–calcium phosphate interactions in fouling of modified stainless-steel surfaces by simulated milk. International Dairy Journal, 2008, 18, 72-80.	3.0	34
38	The ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Biofouling, 2014, 30, 675-683.	2.2	34
39	A versatile reactor for continuous monitoring of biofilm properties in laboratory and industrial conditions. Letters in Applied Microbiology, 2002, 34, 22-26.	2.2	31
40	Deposition from a milk mineral solution on novel heat transfer surfaces under turbulent flow conditions. Journal of Food Engineering, 2008, 85, 29-41.	5.2	31
41	96-well microtiter plates for biofouling simulation in biomedical settings. Biofouling, 2014, 30, 535-546.	2.2	31
42	Combination of selected enzymes with cetyltrimethylammonium bromide in biofilm inactivation, removal and regrowth. Food Research International, 2017, 95, 101-107.	6.2	30
43	Flow cells as <i>quasi</i> -ideal systems for biofouling simulation of industrial piping systems. Biofouling, 2013, 29, 953-966.	2.2	28
44	Interaction between atypical microorganisms and <i>E. coli </i> ii) in catheter-associated urinary tract biofilms. Biofouling, 2014, 30, 893-902.	2.2	27
45	The impact of material properties, nutrient load and shear stress on biofouling in food industries. Food and Bioproducts Processing, 2015, 95, 228-236.	3.6	27
46	Comparative stability and efficacy of selected chlorine-based biocides against Escherichia coli in planktonic and biofilm states. Food Research International, 2017, 102, 511-518.	6.2	27
47	Posttreatment of a Brewery Wastewater Using a Sequencing Batch Reactor. Water Environment Research, 2001, 73, 45-51.	2.7	26
48	Chemical composition and activity of a biofilm during the start-up of an airlift reactor. Water Science and Technology, 2000, 41, 105-111.	2.5	26
49	The effects of surface type on the removal of Bacillus cereus and Pseudomonas fluorescens single and dual species biofilms. Food and Bioproducts Processing, 2015, 93, 234-241.	3.6	25
50	A Simplified Analysis of Reaction and Mass Transfer in UASB and EGSB Reactors. Environmental Technology (United Kingdom), 1997, 18, 35-44.	2.2	24
51	Monitoring cleaning-in-place of shampoo films using nanovibration technology. Sensors and Actuators B: Chemical, 2009, 136, 376-382.	7.8	24
52	Monitoring Deposit Build-up using a Novel Mechatronic Surface Sensor (MSS). Food and Bioproducts Processing, 2006, 84, 366-370.	3.6	23
53	Characterization of the heterotrophic bacteria from a minimally processed vegetables plant. LWT - Food Science and Technology, 2017, 85, 293-300.	5.2	23
54	Surface phenomena and hydrodynamic effects on the deposition ofpseudomonas fluorescens. Canadian Journal of Chemical Engineering, 1988, 66, 63-67.	1.7	22

#	Article	IF	CITATIONS
55	Monitoring the thermal efficiency of fouled heat exchangers: A simplified method. Experimental Thermal and Fluid Science, 1997, 14, 455-463.	2.7	22
56	Thermal behaviour of stirred yoghurt during cooling in plate heat exchangers. Journal of Food Engineering, 2006, 76, 433-439.	5.2	22
57	In situ evaluation of a new silorane-based composite resin's bioadhesion properties. Dental Materials, 2011, 27, 1238-1245.	3.5	22
58	Setup and Validation of Flow Cell Systems for Biofouling Simulation in Industrial Settings. Scientific World Journal, The, 2012, 2012, 1-10.	2.1	22
59	Localization of Contamination Sources in Drinking Water Distribution Systems: A Method Based on Successive Positive Readings of Sensors. Water Resources Management, 2013, 27, 4623-4635.	3.9	21
60	Anti-microbial coating innovations to prevent infectious diseases (AMiCI): Cost action ca15114. Bioengineered, 2017, 8, 679-685.	3.2	20
61	The combined effects of shear stress and mass transfer on the balance between biofilm and suspended cell dynamics. Desalination and Water Treatment, 2015, 53, 3348-3354.	1.0	19
62	Disinfection with neutral electrolyzed oxidizing water to reduce microbial load and to prevent biofilm regrowth in the processing of fresh-cut vegetables. Food and Bioproducts Processing, 2016, 98, 333-340.	3.6	19
63	Evaluation of SICAN performance for biofouling mitigation in the food industry. Food Control, 2016, 62, 201-207.	5.5	19
64	<i>Staphylococcus aureus</i> and <i>Escherichia coli</i> dualâ€species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles. Journal of Biomedical Materials Research - Part A, 2017, 105, 491-497.	4.0	19
65	Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formation. Journal of Biomaterials Applications, 2014, 28, 1325-1335.	2.4	18
66	Influence of the shear stress and salinity on Anammox biofilms formation: modelling results. Bioprocess and Biosystems Engineering, 2014, 37, 1955-1961.	3.4	18
67	Biofilm Control With New Microparticles With Immobilized Biocide. Heat Transfer Engineering, 2013, 34, 712-718.	1.9	17
68	Biofilm Localization in the Vertical Wall of Shaking 96-Well Plates. Scientifica, 2014, 2014, 1-6.	1.7	17
69	Anti-sessile bacterial and cytocompatibility properties of CHX-loaded nanohydroxyapatite. Colloids and Surfaces B: Biointerfaces, 2015, 130, 305-314.	5.0	17
70	Impact of <i>Delftia tsuruhatensis </i> and <i> Achromobacter xylosoxidans </i> on <i> Escherichia coli </i> dual-species biofilms treated with antibiotic agents. Biofouling, 2016, 32, 227-241.	2.2	17
71	A Multi-Purpose Approach to the Mechanisms of Action of Two Biocides (Benzalkonium Chloride and) Tj ETQq:	l 1 0.78431 3.5	4 rgBT /Oven
72	A Late Pleistocene-Holocene natural seismograph along the Boconol·Fault (Mel·ida Andes, Venezuela): the moraine-dammed Los Zerpa paleo-lake. Bulletin - Societie Geologique De France, 2006, 177, 3-17.	2.2	15

#	Article	IF	Citations
73	Efficacy of antimicrobial combinations to reduce the use of sodium hypochlorite in the control of planktonic and sessile Escherichia coli. Biochemical Engineering Journal, 2015, 104, 115-122.	3.6	15
74	An in vitro model of catheter-associated urinary tract infections to investigate the role of uncommon bacteria on the Escherichia coli microbial consortium. Biochemical Engineering Journal, 2017, 118, 64-69.	3.6	15
75	Pseudomonas fluorescens tolerance to benzyldimethyldodecyl ammonium chloride: Altered phenotype and cross-resistance. Journal of Global Antimicrobial Resistance, 2018, 15, 188-195.	2.2	15
76	Legionella and Biofilmsâ€"Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms, 2021, 9, 1212.	3.6	15
77	Surface Interactions and Deposit Growth in Fouling of Heat Exchangers. Corrosion Reviews, 1993, 11, 55-96.	2.0	13
78	The Effect of Clay Particles on the Activity of Suspended Autotrophic Nitrifying Bacteria and on the Performance of an Air-Lift Reactor. Environmental Technology (United Kingdom), 2001, 22, 123-135.	2.2	13
79	Effect of proteins on calcium phosphate deposition in turbulent flow as a function of surface properties. Experimental Thermal and Fluid Science, 2007, 32, 375-386.	2.7	13
80	Escherichia coli adhesion to surfaces–a thermodynamic assessment. Colloid and Polymer Science, 2015, 293, 177-185.	2.1	12
81	The Role of Kaolin Particles in the Performance of a Carbamate-Based Biocide for Water Bacterial Control. Water Environment Research, 2002, 74, 235-241.	2.7	9
82	Simplified numerical simulation to obtain heat transfer correlations for stirred yoghurt in a plate heat exchanger. Food and Bioproducts Processing, 2008, 86, 296-303.	3.6	9
83	Identifying the Nature of Fouling Layers by Online Monitoring of the Propagation of Vibrations Along the Deposition Surface. Heat Transfer Engineering, 2014, 35, 251-257.	1.9	9
84	Retention of bacteria by cellulose fibres as a means of reducing biofouling in paper pulp production processes. Biofouling, 1998 , 13 , $1-18$.	2.2	8
85	Biofilm formation and its role in fixed film processes. , 2003, , 337-349.		8
86	Evaluation of SICON \hat{A}^{\otimes} surfaces for biofouling mitigation in critical process areas. Food and Bioproducts Processing, 2016, 98, 173-180.	3.6	8
87	The Effects of Selected Brominated and Chlorinated Chemicals on (i) Pseudomonas fluorescens (i) Planktonic Cells and Flow-Generated Biofilms. Journal of Food Processing and Preservation, 2016, 40, 316-328.	2.0	7
88	Mechanistic Aspects of Heat Exchanger and Membrane Biofouling and Prevention., 2010,, 365-380.		7
89	Characterization of biofilm structure and properties via processing of 2D optical coherence tomography images in BISCAP. Bioinformatics, 2022, 38, 1708-1715.	4.1	7
90	Monitoring of biofilms in the food and beverage industries. , 2009, , 131-151.		6

Luis F Melo

#	Article	IF	CITATION
91	A modular reactor to simulate biofilm development in orthopedic materials. International Microbiology, 2013, 16, 191-8.	2.4	6
92	Graph-based network modeling and simulation of condensers in once-through cooling water system under the effect of biofouling formation. Applied Thermal Engineering, 2020, 165, 114577.	6.0	4
93	EFFECTS OF HYDRODYNAMIC STRESS AND FEED RATE ON THE PERFORMANCE OF A MICROBIAL FUEL CELL. Environmental Engineering and Management Journal, 2016, 15, 2497-2504.	0.6	4
94	Polyphase development of the Falc \tilde{A}^3 n Basin in northwestern Venezuela: implications for oil generation. Geological Society Special Publication, 2009, 328, 587-612.	1.3	3
95	New Functionalized Macroparticles for Environmentally Sustainable Biofilm Control in Water Systems. Antibiotics, 2021, 10, 399.	3.7	2
96	The Dynamic Behavior of Once-Through Cooling Water Systems under Fouling Phenomena. Heat Transfer Engineering, 0, , 1-9.	1.9	1
97	Affordable Pretreatment Strategy for Mitigation of Biofouling in Drinking-Water Systems. Journal of Environmental Engineering, ASCE, 2022, 148, .	1.4	1