Peter J M Van Haastert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6448142/publications.pdf

Version: 2024-02-01

		172457	175258
59	2,910	29	52
papers	citations	h-index	g-index
59	59	59	2478
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Short- and long-term memory of moving amoeboid cells. PLoS ONE, 2021, 16, e0246345.	2.5	8
2	Combined FCS and PCH Analysis to Quantify Protein Dimerization in Living Cells. International Journal of Molecular Sciences, 2021, 22, 7300.	4.1	3
3	Forty-five years of cGMP research in <i>Dictyostelium</i> : understanding the regulation and function of the cGMP pathway for cell movement and chemotaxis. Molecular Biology of the Cell, 2021, 32, ar8.	2.1	3
4	Symmetry Breaking during Cell Movement in the Context of Excitability, Kinetic Fine-Tuning and Memory of Pseudopod Formation. Cells, 2020, 9, 1809.	4.1	2
5	Unified control of amoeboid pseudopod extension in multiple organisms by branched F-actin in the front and parallel F-actin/myosin in the cortex. PLoS ONE, 2020, 15, e0243442.	2.5	4
6	Title is missing!. , 2020, 15, e0243442.		O
7	Title is missing!. , 2020, 15, e0243442.		O
8	Title is missing!. , 2020, 15, e0243442.		0
9	Title is missing!. , 2020, 15, e0243442.		O
10	Title is missing!. , 2020, 15, e0243442.		0
11	Title is missing!. , 2020, 15, e0243442.		O
12	The cytoskeleton regulates symmetry transitions in moving amoeboid cells. Journal of Cell Science, 2018, 131, .	2.0	7
13	Coupled excitable Ras and F-actin activation mediates spontaneous pseudopod formation and directed cell movement. Molecular Biology of the Cell, 2017, 28, 922-934.	2.1	59
14	A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover. Nature Communications, 2017, 8, 1008.	12.8	53
15	A Gî±-Stimulated RapGEF Is a Receptor-Proximal Regulator of Dictyostelium Chemotaxis. Developmental Cell, 2016, 37, 458-472.	7.0	16
16	Mathematics of Experimentally Generated Chemoattractant Gradients. Methods in Molecular Biology, 2016, 1407, 381-396.	0.9	6
17	The small GTPases Ras and Rap1 bind to and control TORC2 activity. Scientific Reports, 2016, 6, 25823.	3.3	47
18	Direct Interaction between TalinB and Rap1 is necessary for adhesion of Dictyostelium cells. BMC Cell Biology, 2016, 17, 1.	3.0	49

#	Article	IF	Citations
19	A Worldwide Competition to Compare the Speed and Chemotactic Accuracy of Neutrophil-Like Cells. PLoS ONE, 2016, 11, e0154491.	2.5	16
20	Rap1-dependent pathways coordinate cytokinesis in <i>Dictyostelium</i> . Molecular Biology of the Cell, 2014, 25, 4195-4204.	2.1	17
21	Ras activation and symmetry breaking during <i>Dictyostelium</i> chemotaxis. Journal of Cell Science, 2013, 126, 4502-4513.	2.0	42
22	<i>Dictyostelium</i> Ric8 is a nonreceptor guanine exchange factor for heterotrimeric G proteins and is important for development and chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6424-6429.	7.1	35
23	Amoeboid Cells Use Protrusions for Walking, Gliding and Swimming. PLoS ONE, 2011, 6, e27532.	2.5	42
24	Chemotaxis: A Feedback-Based Computational Model Robustly Predicts Multiple Aspects of Real Cell Behaviour. PLoS Biology, 2011, 9, e1000618.	5.6	141
25	How Cells Use Pseudopods for Persistent Movement and Navigation. Science Signaling, 2011, 4, pe6.	3.6	17
26	A Rap/Phosphatidylinositol 3-Kinase Pathway Controls Pseudopod Formation. Molecular Biology of the Cell, 2010, 21, 936-945.	2.1	38
27	A Model for a Correlated Random Walk Based on the Ordered Extension of Pseudopodia. PLoS Computational Biology, 2010, 6, e1000874.	3.2	32
28	Quimp3, an automated pseudopod-tracking algorithm. Cell Adhesion and Migration, 2010, 4, 46-55.	2.7	30
29	A Stochastic Model for Chemotaxis Based on the Ordered Extension of Pseudopods. Biophysical Journal, 2010, 99, 3345-3354.	0.5	28
30	Chemotaxis: insights from the extending pseudopod. Journal of Cell Science, 2010, 123, 3031-3037.	2.0	46
31	Food Searching Strategy of Amoeboid Cells by Starvation Induced Run Length Extension. PLoS ONE, 2009, 4, e6814.	2.5	37
32	Switching direction in electric-signal-induced cell migration by cyclic guanosine monophosphate and phosphatidylinositol signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6667-6672.	7.1	78
33	Analysis of cell movement by simultaneous quantification of local membrane displacement and fluorescent intensities using Quimp2. Cytoskeleton, 2009, 66, 156-165.	4.4	47
34	The local cell curvature guides pseudopodia towards chemoattractants. HFSP Journal, 2009, 3, 282-286.	2.5	17
35	The Ordered Extension of Pseudopodia by Amoeboid Cells in the Absence of External Cues. PLoS ONE, 2009, 4, e5253.	2.5	144
36	Navigation of Chemotactic Cells by Parallel Signaling to Pseudopod Persistence and Orientation. PLoS ONE, 2009, 4, e6842.	2.5	93

#	Article	IF	CITATIONS
37	Highlighting the role of Ras and Rap during Dictyostelium chemotaxis. Cellular Signalling, 2008, 20, 1415-1422.	3.6	64
38	The role of cGMP and the rear of the cell in Dictyostelium chemotaxis and cell streaming. Journal of Cell Science, 2008, 121, 120-127.	2.0	22
39	Four key signaling pathways mediating chemotaxis in <i>Dictyostelium discoideum </i> . Journal of Cell Biology, 2008, 180, 747-753.	5.2	105
40	PI3-kinase signaling contributes to orientation in shallow gradients and enhances speed in steep chemoattractant gradients. Journal of Cell Science, 2008, 121, 3589-3597.	2.0	44
41	Essential role of PI3-kinase and phospholipase A2 in Dictyostelium discoideum chemotaxis. Journal of Cell Biology, 2007, 177, 809-816.	5.2	101
42	Chemotaxis: Navigating by Multiple Signaling Pathways. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe40.	3.9	44
43	Biased Random Walk by Stochastic Fluctuations of Chemoattractant-Receptor Interactions at the Lower Limit of Detection. Biophysical Journal, 2007, 93, 1787-1796.	0.5	101
44	Regulation of Phagocytosis in Dictyostelium by the Inositol 5-Phosphatase OCRL Homolog Dd5P4. Traffic, 2007, 8, 618-628.	2.7	61
45	The regulation of myosin II in Dictyostelium. European Journal of Cell Biology, 2006, 85, 969-979.	3.6	91
46	Guanylyl Cyclase Protein and cGMP Product Independently Control Front and Back of Chemotaxing Dictyostelium Cells. Molecular Biology of the Cell, 2006, 17, 3921-3929.	2.1	44
47	Characterization of the GbpD-activated Rap1 Pathway Regulating Adhesion and Cell Polarity in Dictyostelium discoideum*. Journal of Biological Chemistry, 2006, 281, 23367-23376.	3.4	47
48	Analysis of Signal Transduction: Formation of cAMP, cGMP, and Ins(1,4,5)P ₃ In Vivo and In Vitro., 2006, 346, 369-392.		11
49	Activation of Soluble Guanylyl Cyclase at the Leading Edge during Dictyostelium Chemotaxis. Molecular Biology of the Cell, 2005, 16, 976-983.	2.1	25
50	Chemotaxis: signalling the way forward. Nature Reviews Molecular Cell Biology, 2004, 5, 626-634.	37.0	628
51	A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium. EMBO Journal, 2002, 21, 4560-4570.	7.8	140
52	Genes lost during evolution. Nature, 2001, 411, 1013-1014.	27.8	80
53	Expression of a bioactive, single-chain choriogonadotropin in Dictyostelium discoideum. FEBS Journal, 1998, 256, 359-363.	0.2	27
54	Phospholipase-C-Independent Inositol 1,4,5-Trisphosphate Formation in Dictyostelium Cells - Activation of a Plasma-Membrane-Bound Phosphatase by Receptor-Stimulated Ca2+ Influx. FEBS Journal, 1997, 244, 113-119.	0.2	20

#	Article	IF	CITATIONS
55	Phosphorylation of Inositol 1,4,5-Trisphosphate Analogues by 3-Kinase and Dephosphorylation of Inositol 1,3,4,5-Tetrakisphosphate Analogues by 5-Phosphatase. FEBS Journal, 1994, 226, 561-566.	0.2	11
56	Lithium, an inhibitor of cAMP-induced inositol 1,4,5-trisphosphate accumulation in Dictyostelium discoideum, inhibits activation of guanine-nucleotide-binding regulatory proteins, reduces activation of adenylylcyclase, but potentiates activation of guanylyl cyclase by cAMP. FEBS Journal, 1992, 209, 299-304.	0.2	11
57	Sensory transduction in eukaryotes. A comparison between Dictyostelium and vertebrate cells. FEBS Journal, 1991, 195, 289-303.	0.2	58
58	Activation of a pertussis-toxin-sensitive guanine-nucleotide-binding regulatory protein during desensitization of Dictyostelium discoideum cells to chemotactic signals. FEBS Journal, 1991, 195, 715-721.	0.2	9
59	Dynamics and function of the inositolcycle inDictyostelium discoideum. Genesis, 1991, 12, 19-24.	2.1	9