
Lifen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6447911/publications.pdf Version: 2024-02-01

LIFEN WANG

#	Article	IF	CITATIONS
1	Electrically driven motion, destruction, and chirality change of polar vortices in oxide superlattices. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	5.1	6
2	Emergence of Insulating Ferrimagnetism and Perpendicular Magnetic Anisotropy in 3d–5d Perovskite Oxide Composite Films for Insulator Spintronics. ACS Applied Materials & Interfaces, 2022, 14, 15407-15414.	8.0	8
3	Engineering Interlayer Electron–Phonon Coupling in WS ₂ /BN Heterostructures. Nano Letters, 2022, 22, 2725-2733.	9.1	7
4	Atomic-scale visualization of metallic lead leak related fine structure in CsPbBr ₃ quantum dots. Nanoscale, 2021, 13, 124-130.	5.6	4
5	Evolution of interlayer stacking orders and rotations in bilayer PtSe ₂ visualized by STEM. 2D Materials, 2021, 8, 025014.	4.4	4
6	Atomic-scale dynamics of the phase transition in bilayer PtSe ₂ . Journal of Materials Chemistry C, 2021, 9, 5261-5266.	5.5	5
7	Microscopic Kinetics Pathway of Salt Crystallization in Graphene Nanocapillaries. Physical Review Letters, 2021, 126, 136001.	7.8	22
8	Atomic-Scale Observation of Structure Transition from Brownmillerite to Infinite Layer in SrFeO _{2.5} Thin Films. Chemistry of Materials, 2021, 33, 3113-3120.	6.7	10
9	Synthesis of centimeter-scale high-quality polycrystalline hexagonal boron nitride films from Fe fluxes. Nanoscale, 2021, 13, 11223-11231.	5.6	9
10	lsotope Effect of Hydrogen Functionalization in Layered Germanane: Implications for Germanane-Based Optoelectronics. ACS Applied Nano Materials, 2021, 4, 13708-13715.	5.0	6
11	Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18954-18961.	7.1	41
12	Surface protonation and oxygen evolution activity of epitaxial La1â^'xSrxCoO3 thin films. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	5
13	Synthesis of Honeycomb‣tructured Beryllium Oxide via Graphene Liquid Cells. Angewandte Chemie, 2020, 132, 15864-15870.	2.0	Ο
14	Synthesis of Honeycomb‣tructured Beryllium Oxide via Graphene Liquid Cells. Angewandte Chemie - International Edition, 2020, 59, 15734-15740.	13.8	18
15	Unraveling nanoscale electrochemical dynamics of graphite fluoride by <i>in situ</i> electron microscopy: key difference between lithiation and sodiation. Journal of Materials Chemistry A, 2020, 8, 6105-6111.	10.3	40
16	Visualizing Anisotropic Oxygen Diffusion in Ceria under Activated Conditions. Physical Review Letters, 2020, 124, 056002.	7.8	12
17	Strain-Inhibited Electromigration of Oxygen Vacancies in LaCoO ₃ . ACS Applied Materials & Interfaces, 2019, 11, 36800-36806.	8.0	15
18	In-situ TEM investigation of MoS2 upon alkali metal intercalation. Science China Chemistry, 2018, 61, 222-227.	8.2	26

LIFEN WANG

#	Article	IF	CITATIONS
19	Rate mechanism of vanadium oxide coated tin dioxide nanowire electrode for lithium ion battery. Nano Energy, 2017, 42, 294-299.	16.0	18
20	Fractal growth of platinum electrodeposits revealed by in situ electron microscopy. Nanoscale, 2016, 8, 17250-17255.	5.6	11
21	Dynamic Rate Mechanism of V2O5 Coated SnO 2 Nanowires for Lithium Ion Batteries Studied by in situ TEM. Microscopy and Microanalysis, 2015, 21, 1913-1914.	0.4	0
22	Atomic Mechanism of Dynamic Electrochemical Lithiation Processes of MoS ₂ Nanosheets. Journal of the American Chemical Society, 2014, 136, 6693-6697.	13.7	454
23	Exotic Reaction Front Migration and Stage Structure in Lithiated Silicon Nanowires. ACS Nano, 2014, 8, 8249-8254.	14.6	18
24	Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nature Communications, 2014, 5, 4565.	12.8	139
25	Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM. Nano Research, 2014, 7, 1065-1072.	10.4	30
26	Real-time in situ TEM studying the fading mechanism of tin dioxide nanowire electrodes in lithium ion batteries. Science China Technological Sciences, 2013, 56, 2630-2635.	4.0	23
27	Recent development of studies on the mechanism of resistive memories in several metal oxides. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2361-2369.	5.1	12
28	Dynamic nanomechanics of zinc oxide nanowires. Applied Physics Letters, 2012, 100, 163110.	3.3	9
29	The Piezotronic Effect of Zinc Oxide Nanowires Studied by In Situ TEM. Advanced Materials, 2012, 24, 4676-4682.	21.0	58