
Ahmed Ghazy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6447093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermocapillary and buoyancy driven convection analysis for a hybrid nanofluids enclosed in a cavity with heated obstacle. European Physical Journal: Special Topics, 2022, 231, 2669-2681.	1.2	3
2	Evaluating the Protective Performance of Municipal Firefighting Suits During Firefighter's Motion Under Fire Exposure. Fire Technology, 2021, 57, 1827-1846.	1.5	6
3	On the Protective Performance of Firefighters' Garments: Air Gaps Between Fabric Layers. Fire Technology, 2020, 56, 821-836.	1.5	6
4	Influence of the Fabric Properties on the Protective Performance of Flame Resistant Clothing during the Body Movement. Fire Technology, 2019, 55, 713-728.	1.5	7
5	The Thermal Protective Performance of Firefighters' Clothing: The Air Gap Between the Clothing and the Body. Heat Transfer Engineering, 2017, 38, 975-986.	1.2	23
6	Solar desalination system of combined solar still and humidification–dehumidification unit. Heat and Mass Transfer, 2016, 52, 2497-2506.	1.2	15
7	Influence of Thermal Shrinkage on Protective Clothing Performance during Fire Exposure: Numerical Investigation. Mechanical Engineering Research, 2014, 4, .	0.2	23
8	Numerical study of the air gap between fire-protective clothing and the skin. Journal of Industrial Textiles, 2014, 44, 257-274.	1.1	32
9	Numerical simulation of the influence of fabric's motion on protective clothing performance during flash fire exposure. Heat and Mass Transfer, 2013, 49, 775-788.	1.2	34
10	Numerical Simulation of Heat Transfer in Firefighters' Protective Clothing with Multiple Air Gaps during Flash Fire Exposure. Numerical Heat Transfer; Part A: Applications, 2012, 61, 569-593.	1.2	63
11	Influence of the air gap between protective clothing and skin on clothing performance during flash fire exposure. Heat and Mass Transfer, 2011, 47, 1275-1288.	1.2	37
12	Numerical Simulation of Transient Heat Transfer in a Protective Clothing System during a Flash Fire Exposure. Numerical Heat Transfer; Part A: Applications, 2010, 58, 702-724.	1.2	66
13	A naturally circulated humidifying/dehumidifying solar still with a built-in passive condenser. Desalination, 2004, 169, 129-149.	4.0	22
14	Transient analysis of a new humidification-dehumidification solar still. Desalination, 2003, 155, 187-203.	4.0	33
15	Solar desalination using humidification—dehumidification technology. Desalination, 2002, 142, 119-133.	4.0	61
16	On the Performance of Firefighting Suits Under Different Patterns of Firefighter's Movement: Radiation Heat Transfer Between Layers of the Suit. Fire Technology, 0, , 1.	1.5	1