Daojin Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6447047/publications.pdf Version: 2024-02-01

ΟλΟΙΙΝ ΖΗΟΙΙ

#	Article	IF	CITATIONS
1	Strong Metal–Support Interaction Boosts Activity, Selectivity, and Stability in Electrosynthesis of H ₂ O ₂ . Journal of the American Chemical Society, 2022, 144, 2255-2263.	13.7	90
2	3D printed hierarchical spinel monolithic catalysts for highly efficient semi-hydrogenation of acetylene. Nano Research, 2022, 15, 6010-6018.	10.4	8
3	Electrochemical Oxygen Reduction to Hydrogen Peroxide via a Twoâ€Electron Transfer Pathway on Carbonâ€Based Singleâ€Atom Catalysts. Advanced Materials Interfaces, 2021, 8, 2001360.	3.7	35
4	Kinetic study of electrochemically produced hydrogen bubbles on Pt electrodes with tailored geometries. Nano Research, 2021, 14, 2154-2159.	10.4	15
5	Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chemical Society Reviews, 2021, 50, 8790-8817.	38.1	331
6	Synthesis of Nanosized Metal Sulfides Using Elemental Sulfur in Formamide: Implications for Energy Conversion and Optical Scenarios. ACS Applied Nano Materials, 2021, 4, 2357-2364.	5.0	6
7	Superwetting behaviors at the interface between electrode and electrolyte. Cell Reports Physical Science, 2021, 2, 100374.	5.6	22
8	Research Progress of Oxygen Evolution Reaction Catalysts for Electrochemical Water Splitting. ChemSusChem, 2021, 14, 5359-5383.	6.8	70
9	Electronic coupling strategy to boost water oxidation efficiency based on the modelling of trimetallic hydroxides Ni1-x-yFexCry(OH)2: From theory to experiment. Chemical Engineering Journal, 2020, 402, 126144.	12.7	11
10	Understanding of Dynamic Contacting Behaviors of Underwater Gas Bubbles on Solid Surfaces. Langmuir, 2020, 36, 11422-11428.	3.5	7
11	Bubble Consumption Dynamics in Electrochemical Oxygen Reduction. Chemical Research in Chinese Universities, 2020, 36, 473-478.	2.6	3
12	Insights into the Enhanced Catalytic Activity of Fe-Doped LiCoPO ₄ for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 2959-2965.	5.1	5
13	Hollow-Structured Layered Double Hydroxide: Structure Evolution Induced by Gradient Composition. Inorganic Chemistry, 2020, 59, 1804-1809.	4.0	10
14	Enhancing oxygen evolution reaction by cationic surfactants. Nano Research, 2019, 12, 2302-2306.	10.4	28
15	NiFe Hydroxide Lattice Tensile Strain: Enhancement of Adsorption of Oxygenated Intermediates for Efficient Water Oxidation Catalysis. Angewandte Chemie, 2019, 131, 746-750.	2.0	55
16	NiFe Hydroxide Lattice Tensile Strain: Enhancement of Adsorption of Oxygenated Intermediates for Efficient Water Oxidation Catalysis. Angewandte Chemie - International Edition, 2019, 58, 736-740.	13.8	335
17	A highly-efficient oxygen evolution electrode based on defective nickel-iron layered double hydroxide. Science China Materials, 2018, 61, 939-947.	6.3	69
18	Layered double hydroxides with atomic-scale defects for superior electrocatalysis. Nano Research, 2018, 11, 4524-4534.	10.4	130

Daojin Zhou

#	Article	IF	CITATIONS
19	NiCoFeâ€Layered Double Hydroxides/Nâ€Doped Graphene Oxide Array Colloid Composite as an Efficient Bifunctional Catalyst for Oxygen Electrocatalytic Reactions. Advanced Energy Materials, 2018, 8, 1701905.	19.5	276
20	Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Research, 2018, 11, 1358-1368.	10.4	134
21	Boosting oxygen reaction activity by coupling sulfides for high-performance rechargeable metal–air battery. Journal of Materials Chemistry A, 2018, 6, 21162-21166.	10.3	38
22	Flameâ€Engraved Nickel–Iron Layered Double Hydroxide Nanosheets for Boosting Oxygen Evolution Reactivity. Small Methods, 2018, 2, 1800083.	8.6	115
23	Activating basal plane in NiFe layered double hydroxide by Mn ²⁺ doping for efficient and durable oxygen evolution reaction. Nanoscale Horizons, 2018, 3, 532-537.	8.0	144
24	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie, 2018, 130, 9536-9540.	2.0	86
25	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie - International Edition, 2018, 57, 9392-9396.	13.8	284
26	Superaerophobic Ultrathin Ni–Mo Alloy Nanosheet Array from In Situ Topotactic Reduction for Hydrogen Evolution Reaction. Small, 2017, 13, 1701648.	10.0	190
27	Solvent Recyclable Synthesis of Nitrogenâ€Rich Nanotubes with Embedded CoFe Nanoparticles for Electrochemical Oxygenâ€Involving Reactions. Energy Technology, 0, , 2100957.	3.8	1