Bart Smeets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6446857/publications.pdf Version: 2024-02-01

RADT SMEETS

#	Article	IF	CITATIONS
1	Artificial intelligence: is there a potential role in nephropathology?. Nephrology Dialysis Transplantation, 2022, 37, 438-440.	0.7	4
2	The podocyte as a direct target of glucocorticoids in nephrotic syndrome. Nephrology Dialysis Transplantation, 2022, 37, 1808-1815.	0.7	8
3	Investigating the Molecular Mechanisms of Renal Hepcidin Induction and Protection upon Hemoglobin-Induced Acute Kidney Injury. International Journal of Molecular Sciences, 2022, 23, 1352.	4.1	4
4	Kidney tubule iron loading in experimental focal segmental glomerulosclerosis. Scientific Reports, 2022, 12, 1199.	3.3	6
5	SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell, 2022, 29, 217-231.e8.	11.1	146
6	Parietal epithelial cells maintain the epithelial cell continuum forming Bowman's space in focal segmental glomerulosclerosis. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	4
7	Human pluripotent stem cell-derived kidney organoids for personalized congenital and idiopathic nephrotic syndrome modeling. Development (Cambridge), 2022, 149, .	2.5	16
8	Motile Cilia on Kidney Proximal Tubular Epithelial Cells Are Associated With Tubular Injury and Interstitial Fibrosis. Frontiers in Cell and Developmental Biology, 2022, 10, 765887.	3.7	3
9	MO168: Urinary Podocin Cell Count in Relation to Glomerular Damage Markers in Patients with Primary Nephrotic Syndrome. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0
10	Carbonic Anhydrase IX-Targeted α-Radionuclide Therapy with 225Ac Inhibits Tumor Growth in a Renal Cell Carcinoma Model. Pharmaceuticals, 2022, 15, 570.	3.8	6
11	MO066: The Role of Platelet-Derived Growth Factor in Focal Segmental Glomerulosclerosis. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0
12	Convolutional Neural Networks for the Evaluation of Chronic and Inflammatory Lesions in Kidney Transplant Biopsies. American Journal of Pathology, 2022, 192, 1418-1432.	3.8	16
13	Quantitative assessment of inflammatory infiltrates in kidney transplant biopsies using multiplex tyramide signal amplification and deep learning. Laboratory Investigation, 2021, 101, 970-982.	3.7	25
14	Establishment and characterization of a novel conditionally immortalized human parietal epithelial cell line. Experimental Cell Research, 2021, 405, 112712.	2.6	2
15	Blocking of inflammatory heparan sulfate domains by specific antibodies is not protective in experimental glomerulonephritis. PLoS ONE, 2021, 16, e0261722.	2.5	3
16	Nephrotic syndrome in a dish: recent developments in modeling in vitro. Pediatric Nephrology, 2020, 35, 1363-1372.	1.7	15
17	Developmental patterns in human blood–brain barrier and blood–cerebrospinal fluid barrier ABCÂdrug transporter expression. Histochemistry and Cell Biology, 2020, 154, 265-273.	1.7	25
18	Inhibition of mTOR delayed but could not prevent experimental collapsing focal segmental glomerulosclerosis. Scientific Reports, 2020, 10, 8580.	3.3	3

BART SMEETS

#	Article	IF	CITATIONS
19	CD9 Is a Novel Target in Glomerular Diseases Typified by Parietal Epithelial Cell Activation. American Journal of Kidney Diseases, 2020, 75, 812-814.	1.9	4
20	Glomerular Outgrowth as an Ex Vivo Assay to Analyze Pathways Involved in Parietal Epithelial Cell Activation. Journal of Visualized Experiments, 2020, , .	0.3	0
21	Cre recombinase toxicity in podocytes: a novel genetic model for FSGS in adolescent mice. American Journal of Physiology - Renal Physiology, 2019, 317, F1375-F1382.	2.7	4
22	Deep Learning–Based Histopathologic Assessment of Kidney Tissue. Journal of the American Society of Nephrology: JASN, 2019, 30, 1968-1979.	6.1	226
23	A Comprehensive Analysis of Ontogeny of Renal Drug Transporters: mRNA Analyses, Quantitative Proteomics, and Localization. Clinical Pharmacology and Therapeutics, 2019, 106, 1083-1092.	4.7	69
24	Novel parietal epithelial cell subpopulations contribute to focal segmental glomerulosclerosis and glomerular tip lesions. Kidney International, 2019, 96, 80-93.	5.2	50
25	Renal phospholipidosis and impaired magnesium handling in highâ€fatâ€diet–fed mice. FASEB Journal, 2019, 33, 7192-7201.	0.5	12
26	O30â€A comprehensive analysis of ontogeny of renal drug transporters: mRNA analyses, quantitative proteomics and localization. Archives of Disease in Childhood, 2019, 104, e13.2-e13.	1.9	0
27	P98â€Semi-quantification and localization of membrane transporters in paediatric kidney tissue. Archives of Disease in Childhood, 2019, 104, e58.1-e58.	1.9	0
28	O32â€Ontogeny of human kidney OCT2 expression across the paediatric age range. Archives of Disease in Childhood, 2019, 104, e14.2-e14.	1.9	0
29	CD44 is required for the pathogenesis of experimental crescentic glomerulonephritis and collapsing focal segmental glomerulosclerosis. Kidney International, 2018, 93, 626-642.	5.2	52
30	Automatic segmentation of histopathological slides of renal tissue using deep learning. , 2018, , .		23
31	Investigations of Glucocorticoid Action in GN. Journal of the American Society of Nephrology: JASN, 2017, 28, 1408-1420.	6.1	46
32	Parietal cells—new perspectives in glomerular disease. Cell and Tissue Research, 2017, 369, 237-244.	2.9	21
33	Origin and fate of the regenerating cells of the kidney. European Journal of Pharmacology, 2016, 790, 62-73.	3.5	11
34	Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nature Reviews Nephrology, 2016, 12, 768-776.	9.6	125
35	Isolation and Primary Culture of Murine Podocytes with Proven Origin. Methods in Molecular Biology, 2016, 1397, 3-10.	0.9	4
36	FO034CRE-RECOMBINASE MEDIATED TOXICITY IN PODOCYTES - A NEW MODEL FOR FSGS. Nephrology Dialysis Transplantation, 2015, 30, iii17-iii17.	0.7	0

BART SMEETS

#	Article	IF	CITATIONS
37	SP096COMMON PATTERNS OF GLOMERULAR EPITHELIAL CELLS IN HUMAN SECONDARY FSGS LESIONS. Nephrology Dialysis Transplantation, 2015, 30, iii410-iii410.	0.7	0
38	Common histological patterns in glomerular epithelial cells in secondary focal segmental glomerulosclerosis. Kidney International, 2015, 88, 990-998.	5.2	57
39	SP048UNRAVELING THE MECHANISM OF ACTION OF GLUCOCORTICOIDS IN GLOMERULONEPHRITIS. Nephrology Dialysis Transplantation, 2015, 30, iii396-iii396.	0.7	0
40	Sestrin 2: a regulator of the glomerular parietal epithelial cell phenotype. American Journal of Physiology - Renal Physiology, 2014, 307, F798-F799.	2.7	5
41	The Regenerative Potential of Parietal Epithelial Cells in Adult Mice. Journal of the American Society of Nephrology: JASN, 2014, 25, 693-705.	6.1	96
42	Origin of regenerating tubular cells after acute kidney injury. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1533-1538.	7.1	139
43	Origin of Parietal Podocytes in Atubular Glomeruli Mapped by Lineage Tracing. Journal of the American Society of Nephrology: JASN, 2014, 25, 129-141.	6.1	41
44	Role of Parietal Epithelial Cells in Kidney Injury: The Case of Rapidly Progressing Glomerulonephritis and Focal and Segmental Glomerulosclerosis. Nephron Experimental Nephrology, 2014, 126, 97-100.	2.2	23
45	Bioengineered kidneys: new sights on a distant horizon. International Urology and Nephrology, 2014, 46, 477-480.	1.4	1
46	The emergence of the glomerular parietal epithelial cell. Nature Reviews Nephrology, 2014, 10, 158-173.	9.6	131
47	Detection of Activated Parietal Epithelial Cells on the Glomerular Tuft Distinguishes Early Focal Segmental Glomerulosclerosis from Minimal Change Disease. American Journal of Pathology, 2014, 184, 3239-3248.	3.8	81
48	Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. Journal of Pathology, 2013, 229, 645-659.	4.5	188
49	Novel target in the treatment of RPGN: the activated parietal cell. Nephrology Dialysis Transplantation, 2013, 28, 489-492.	0.7	15
50	Albumin Is Recycled from the Primary Urine by Tubular Transcytosis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1966-1980.	6.1	115
51	Parietal Epithelial Cell Activation Marker in Early Recurrence of FSGS in the Transplant. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 1852-1858.	4.5	99
52	Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation. Journal of the American Society of Nephrology: JASN, 2012, 23, 629-640.	6.1	61
53	Parietal Epithelial Cells and Podocytes in Glomerular Diseases. Seminars in Nephrology, 2012, 32, 357-367.	1.6	61
54	Primary Cultures of Glomerular Parietal Epithelial Cells or Podocytes with Proven Origin. PLoS ONE, 2012, 7, e34907.	2.5	55

BART SMEETS

#	Article	IF	CITATIONS
55	Parietal Epithelial Cells Participate in the Formation of Sclerotic Lesions in Focal Segmental Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2011, 22, 1262-1274.	6.1	186
56	Models of FSGS and minimal change nephropathy. Drug Discovery Today: Disease Models, 2010, 7, 3-11.	1.2	4
57	Recruitment of Podocytes from Glomerular Parietal Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2009, 20, 333-343.	6.1	418
58	Renal Progenitor Cells Contribute to Hyperplastic Lesions of Podocytopathies and Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 2593-2603.	6.1	173
59	The SDF-1/CXCR4 Axis Is a Novel Driver of Vascular Development of the Glomerulus. Journal of the American Society of Nephrology: JASN, 2009, 20, 1659-1661.	6.1	13
60	Tracing the Origin of Glomerular Extracapillary Lesions from Parietal Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2009, 20, 2604-2615.	6.1	218
61	Lessons from studies on focal segmental glomerulosclerosis: an important role for parietal epithelial cells?. Journal of Pathology, 2006, 210, 263-272.	4.5	31
62	Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells. Kidney International, 2006, 70, 338-344.	5.2	99
63	Angiotensin converting enzyme inhibition prevents development of collapsing focal segmental glomerulosclerosis in Thy-1.1 transgenic mice. Nephrology Dialysis Transplantation, 2006, 21, 3087-3097.	0.7	12
64	The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis11See editorial by Schwartz, p. 1894 Kidney International, 2005, 68, 1562-1572.	5.2	104
65	The Parietal Epithelial Cell: A Key Player in the Pathogenesis of Focal Segmental Clomerulosclerosis in Thy-1.1 Transgenic Mice. Journal of the American Society of Nephrology: JASN, 2004, 15, 928-939.	6.1	78
66	Podocyte changes upon induction of albuminuria in Thy-1.1 transgenic mice. Nephrology Dialysis Transplantation, 2003, 18, 2524-2533.	0.7	30
67	Changes in mRNA expression profile underlie phenotypic adaptations in creatine kinase-deficient muscles. FEBS Letters, 2001, 506, 73-78.	2.8	25
68	Tight linkage between myotonic dystrophy and apolipoprotein E genes revealed with allele-specific oligonucleotides. Human Genetics, 1988, 80, 49-52.	3.8	13