
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/64466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SALT ANDDROUGHTSTRESSSIGNALTRANSDUCTION INPLANTS. Annual Review of Plant Biology, 2002, 53, 247-273.	8.6	4,944
2	PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. Annual Review of Plant Biology, 2000, 51, 463-499.	14.2	3,766
3	Abiotic Stress Signaling and Responses in Plants. Cell, 2016, 167, 313-324.	13.5	3,491
4	Plant salt tolerance. Trends in Plant Science, 2001, 6, 66-71.	4.3	2,990
5	Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science, 2009, 324, 1068-1071.	6.0	2,385
6	Cell Signaling during Cold, Drought, and Salt Stress. Plant Cell, 2002, 14, S165-S183.	3.1	1,874
7	Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis[W]. Plant Cell, 2004, 16, 2001-2019.	3.1	1,787
8	Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 6, 441-445.	3.5	1,711
9	Cold stress regulation of gene expression in plants. Trends in Plant Science, 2007, 12, 444-451.	4.3	1,593
10	The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the United States of America, 2000, 97, 6896-6901.	3.3	1,473
11	ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes and Development, 2003, 17, 1043-1054.	2.7	1,363
12	Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal, 2006, 45, 523-539.	2.8	1,324
13	Criteria for Annotation of Plant MicroRNAs. Plant Cell, 2008, 20, 3186-3190.	3.1	1,158
14	Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology, 2018, 19, 489-506.	16.1	1,145
15	The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants. Plant Cell, 2002, 14, 465-477.	3.1	1,127
16	Posttranscriptional Induction of Two Cu/Zn Superoxide Dismutase Genes in Arabidopsis Is Mediated by Downregulation of miR398 and Important for Oxidative Stress Tolerance. Plant Cell, 2006, 18, 2051-2065.	3.1	1,118
17	In vitro reconstitution of an abscisic acid signalling pathway. Nature, 2009, 462, 660-664.	13.7	1,113
18	Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8436-8441.	3.3	1,046

#	Article	IF	CITATIONS
19	Understanding and Improving Salt Tolerance in Plants. Crop Science, 2005, 45, 437-448.	0.8	1,025
20	Endogenous siRNAs Derived from a Pair of Natural cis-Antisense Transcripts Regulate Salt Tolerance in Arabidopsis. Cell, 2005, 123, 1279-1291.	13.5	999
21	Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 2009, 12, 133-139.	3.5	984
22	Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 2013, 23, 1229-1232.	5.7	944
23	Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany, 2003, 55, 225-236.	2.4	933
24	The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases. Plant Physiology, 2003, 132, 666-680.	2.3	898
25	Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 137-148.	0.9	889
26	Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Frontiers in Plant Science, 2013, 4, 1.	1.7	879
27	Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science, 2007, 12, 301-309.	4.3	872
28	Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 2003, 21, 81-85.	9.4	852
29	The <i>Arabidopsis</i> NFYA5 Transcription Factor Is Regulated Transcriptionally and Posttranscriptionally to Promote Drought Resistance. Plant Cell, 2008, 20, 2238-2251.	3.1	812
30	Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8380-8385.	3.3	787
31	A miRNA Involved in Phosphate-Starvation Response in Arabidopsis. Current Biology, 2005, 15, 2038-2043.	1.8	786
32	A R2R3 Type MYB Transcription Factor Is Involved in the Cold Regulation of CBF Genes and in Acquired Freezing Tolerance. Journal of Biological Chemistry, 2006, 281, 37636-37645.	1.6	776
33	A Calcium Sensor Homolog Required for Plant Salt Tolerance. Science, 1998, 280, 1943-1945.	6.0	773
34	Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 2020, 62, 25-54.	4.1	771
35	The <scp>CRISPR</scp> / <scp>C</scp> as9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 2014, 12, 797-807.	4.1	726
36	The Arabidopsis Cold-Responsive Transcriptome and Its Regulation by ICE1. Plant Cell, 2005, 17, 3155-3175.	3.1	711

#	Article	IF	CITATIONS
37	Abiotic stress responses in plants. Nature Reviews Genetics, 2022, 23, 104-119.	7.7	710
38	Regulation of Abscisic Acid Biosynthesis. Plant Physiology, 2003, 133, 29-36.	2.3	708
39	Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell and Environment, 2002, 25, 131-139.	2.8	702
40	Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63, 635-674.	2.3	689
41	Active DNA Demethylation Mediated by DNA Glycosylases. Annual Review of Genetics, 2009, 43, 143-166.	3.2	672
42	Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4632-4637.	3.3	669
43	ROS1, a Repressor of Transcriptional Gene Silencing in Arabidopsis, Encodes a DNA Glycosylase/Lyase. Cell, 2002, 111, 803-814.	13.5	653
44	Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nature Materials, 2017, 16, 1155-1161.	13.3	641
45	Genetic Analysis of Plant Salt Tolerance Using Arabidopsis: Fig. 1 Plant Physiology, 2000, 124, 941-948.	2.3	638
46	Radically Rethinking Agriculture for the 21st Century. Science, 2010, 327, 833-834.	6.0	627
47	Identification of Two Protein Kinases Required for Abscisic Acid Regulation of Seed Germination, Root Growth, and Gene Expression in Arabidopsis. Plant Cell, 2007, 19, 485-494.	3.1	618
48	A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature, 2009, 462, 602-608.	13.7	608
49	Genetic Analysis of Salt Tolerance in Arabidopsis: Evidence for a Critical Role of Potassium Nutrition. Plant Cell, 1998, 10, 1181-1191.	3.1	607
50	The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8281-8286.	3.3	585
51	Comparative Genomics in Salt Tolerance between Arabidopsis and Arabidopsis-Related Halophyte Salt Cress Using Arabidopsis Microarray. Plant Physiology, 2004, 135, 1697-1709.	2.3	542
52	Structural Basis for Sequence-Specific Recognition of DNA by TAL Effectors. Science, 2012, 335, 720-723.	6.0	528
53	Cell signaling under salt, water and cold stresses. Current Opinion in Plant Biology, 2001, 4, 401-406.	3.5	515
54	Conservation of the Salt Overly Sensitive Pathway in Rice. Plant Physiology, 2007, 143, 1001-1012.	2.3	512

4

#	Article	IF	CITATIONS
55	ABA receptor PYL9 promotes drought resistance and leaf senescence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1949-1954.	3.3	508
56	Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the United States of America, 2002, 99, 9061-9066.	3.3	500
57	Application of the CRISPR–Cas System for Efficient Genome Engineering in Plants. Molecular Plant, 2013, 6, 2008-2011.	3.9	495
58	The Arabidopsis LOS5/ABA3 Locus Encodes a Molybdenum Cofactor Sulfurase and Modulates Cold Stress– and Osmotic Stress–Responsive Gene Expression. Plant Cell, 2001, 13, 2063-2083.	3.1	492
59	Role of an Arabidopsis AP2/EREBP-Type Transcriptional Repressor in Abscisic Acid and Drought Stress Responses. Plant Cell, 2005, 17, 2384-2396.	3.1	479
60	Cloning and Characterization of MicroRNAs from Rice. Plant Cell, 2005, 17, 1397-1411.	3.1	462
61	<i>SCREAM/ICE1</i> and <i>SCREAM2</i> Specify Three Cell-State Transitional Steps Leading to <i>Arabidopsis</i> Stomatal Differentiation Â. Plant Cell, 2008, 20, 1775-1785.	3.1	461
62	SOS3 Function in Plant Salt Tolerance Requires N-Myristoylation and Calcium Binding. Plant Cell, 2000, 12, 1667-1677.	3.1	458
63	Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis. Plant Physiology, 2016, 171, 2744-2759.	2.3	453
64	Salt Cress. A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles. Plant Physiology, 2004, 135, 1718-1737.	2.3	447
65	A pathogen-inducible endogenous siRNA in plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18002-18007.	3.3	447
66	AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14150-14155.	3.3	441
67	The Arabidopsis LOS5/ABA3 Locus Encodes a Molybdenum Cofactor Sulfurase and Modulates Cold Stress- and Osmotic Stress-Responsive Gene Expression. Plant Cell, 2001, 13, 2063-2083.	3.1	440
68	Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases. Science, 2012, 335, 85-88.	6.0	439
69	Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biology, 2008, 8, 25.	1.6	436
70	From Laboratory to Field. Using Information from Arabidopsis to Engineer Salt, Cold, and Drought Tolerance in Crops. Plant Physiology, 2004, 135, 615-621.	2.3	432
71	ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant Journal, 2010, 63, 417-429.	2.8	421
72	Regulation and function of DNA methylation in plants and animals. Cell Research, 2011, 21, 442-465.	5.7	421

#	Article	IF	CITATIONS
73	Gain- and loss-of-function mutations inZat10enhance the tolerance of plants to abiotic stress. FEBS Letters, 2006, 580, 6537-6542.	1.3	412
74	Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Current Opinion in Plant Biology, 2007, 10, 290-295.	3.5	404
75	Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 2018, 60, 805-826.	4.1	397
76	The Arabidopsis SOS5 Locus Encodes a Putative Cell Surface Adhesion Protein and Is Required for Normal Cell Expansion. Plant Cell, 2003, 15, 19-32.	3.1	396
77	Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11205-11210.	3.3	394
78	The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes and Development, 2001, 15, 912-924.	2.7	392
79	Molecular Characterization of Functional Domains in the Protein Kinase SOS2 That Is Required for Plant Salt Tolerance. Plant Cell, 2001, 13, 1383-1400.	3.1	390
80	Arabidopsis Protein Kinase PKS5 Inhibits the Plasma Membrane H+-ATPase by Preventing Interaction with 14-3-3 Protein. Plant Cell, 2007, 19, 1617-1634.	3.1	388
81	De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2623-2628.	3.3	388
82	DNA methylation markers for diagnosis and prognosis of common cancers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7414-7419.	3.3	387
83	Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation(China), 2020, 1, 100017.	5.2	387
84	Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response. Molecular Cell, 2018, 69, 100-112.e6.	4.5	385
85	Overexpression of SOS (Salt Overly Sensitive) Genes Increases Salt Tolerance in Transgenic Arabidopsis. Molecular Plant, 2009, 2, 22-31.	3.9	384
86	Regulation of Osmotic Stress-responsive Gene Expression by theLOS6/ABA1 Locus inArabidopsis. Journal of Biological Chemistry, 2002, 277, 8588-8596.	1.6	382
87	A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11771-11776.	3.3	368
88	MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability. Developmental Cell, 2017, 43, 618-629.e5.	3.1	359
89	Molecular Aspects of Osmotic Stress in Plants. Critical Reviews in Plant Sciences, 1997, 16, 253-277.	2.7	356
90	Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Molecular Plant, 2017, 10, 523-525.	3.9	352

#	Article	IF	CITATIONS
91	FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes and Development, 2001, 15, 1971-1984.	2.7	343
92	The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3730-4.	3.3	343
93	Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4511-E4519.	3.3	342
94	Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2611-2616.	3.3	341
95	Gene Regulation During Cold Stress Acclimation in Plants. Methods in Molecular Biology, 2010, 639, 39-55.	0.4	339
96	Regulation of Vacuolar Na+/H+ Exchange in Arabidopsis thaliana by the Salt-Overly-Sensitive (SOS) Pathway. Journal of Biological Chemistry, 2004, 279, 207-215.	1.6	337
97	Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biology, 2007, 8, R96.	13.9	330
98	Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 2006, 11, 372-374.	4.3	329
99	Activated Expression of an <i>Arabidopsis</i> HD-START Protein Confers Drought Tolerance with Improved Root System and Reduced Stomatal Density Â. Plant Cell, 2008, 20, 1134-1151.	3.1	329
100	Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3175-3180.	3.3	328
101	A DEAD Box RNA Helicase Is Essential for mRNA Export and Important for Development and Stress Responses in Arabidopsis. Plant Cell, 2005, 17, 256-267.	3.1	322
102	The genome of the extremophile crucifer Thellungiella parvula. Nature Genetics, 2011, 43, 913-918.	9.4	318
103	Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 613-618.	3.3	318
104	The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3735-40.	3.3	318
105	Involvement of miR169 in the nitrogenâ€starvation responses in Arabidopsis. New Phytologist, 2011, 190, 906-915.	3.5	317
106	Proline Accumulation and Salt-Stress-Induced Gene Expression in a Salt-Hypersensitive Mutant of Arabidopsis. Plant Physiology, 1997, 114, 591-596.	2.3	314
107	Modulation of Abscisic Acid Signal Transduction and Biosynthesis by an Sm-like Protein in Arabidopsis. Developmental Cell, 2001, 1, 771-781.	3.1	311
108	LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO Journal, 2002, 21, 2692-2702.	3.5	303

#	Article	lF	CITATIONS
109	AtHKT1 Facilitates Na+ Homeostasis and K+ Nutrition in Planta. Plant Physiology, 2004, 136, 2500-2511.	2.3	297
110	Involvement of <i>Arabidopsis</i> HOS15 in histone deacetylation and cold tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4945-4950.	3.3	293
111	Epigenetic regulation in plant abiotic stress responses. Journal of Integrative Plant Biology, 2020, 62, 563-580.	4.1	292
112	<i>Arabidopsis</i> decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1717-1722.	3.3	291
113	Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6058-6063.	3.3	284
114	Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics, 2008, 9, 160.	1.2	283
115	Thriving under Stress: How Plants Balance Growth and the Stress Response. Developmental Cell, 2020, 55, 529-543.	3.1	283
116	Gene regulation during cold acclimation in plants. Physiologia Plantarum, 2006, 126, 52-61.	2.6	281
117	Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature, 2013, 504, 168-171.	13.7	281
118	A Calcium Sensor and Its Interacting Protein Kinase Are Global Regulators of Abscisic Acid Signaling in Arabidopsis. Developmental Cell, 2002, 3, 233-244.	3.1	278
119	Abscisic Acidâ€mediated Epigenetic Processes in Plant Development and Stress Responses. Journal of Integrative Plant Biology, 2008, 50, 1187-1195.	4.1	278
120	HOS1, a Genetic Locus Involved in Cold-Responsive Gene Expression in Arabidopsis. Plant Cell, 1998, 10, 1151-1161.	3.1	276
121	Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11796-11801.	3.3	276
122	RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11507-11512.	3.3	275
123	The ABA Receptor PYL8 Promotes Lateral Root Growth by Enhancing MYB77-Dependent Transcription of Auxin-Responsive Genes. Science Signaling, 2014, 7, ra53.	1.6	274
124	Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 780-788.	0.9	272
125	Insights into salt tolerance from the genome of <i>Thellungiella salsuginea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12219-12224.	3.3	272
126	Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO Journal, 2007, 26, 1691-1701.	3.5	262

#	Article	IF	CITATIONS
127	An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14960-14964.	3.3	259
128	Multiplex Gene Editing in Rice Using the CRISPR-Cpf1 System. Molecular Plant, 2017, 10, 1011-1013.	3.9	258
129	ABA receptors: the START of a new paradigm in phytohormone signalling. Journal of Experimental Botany, 2010, 61, 3199-3210.	2.4	248
130	Genome-wide Targeted Mutagenesis in Rice Using the CRISPR/Cas9 System. Molecular Plant, 2017, 10, 1242-1245.	3.9	242
131	An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9873-9878.	3.3	236
132	SOS2 Promotes Salt Tolerance in Part by Interacting with the Vacuolar H ⁺ -ATPase and Upregulating Its Transport Activity. Molecular and Cellular Biology, 2007, 27, 7781-7790.	1.1	234
133	The DNA Glycosylase/Lyase ROS1 Functions in Pruning DNA Methylation Patterns in Arabidopsis. Current Biology, 2007, 17, 54-59.	1.8	234
134	A Mitochondrial Complex I Defect Impairs Cold-Regulated Nuclear Gene Expression. Plant Cell, 2002, 14, 1235-1251.	3.1	233
135	The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18816-18821.	3.3	233
136	Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Science, 1996, 118, 11-23.	1.7	232
137	RNA-directed DNA methylation. Current Opinion in Plant Biology, 2011, 14, 142-147.	3.5	232
138	An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature, 2010, 465, 106-109.	13.7	228
139	Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature, 2007, 447, 735-738.	13.7	225
140	Subunit Compositions of the RNA-Silencing Enzymes Pol IV and Pol V Reveal Their Origins as Specialized Forms of RNA Polymerase II. Molecular Cell, 2009, 33, 192-203.	4.5	225
141	A Histone Acetyltransferase Regulates Active DNA Demethylation in <i>Arabidopsis</i> . Science, 2012, 336, 1445-1448.	6.0	224
142	Leucine-rich repeat extensin proteins regulate plant salt tolerance in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13123-13128.	3.3	224
143	The Protein Kinase SOS2 Activates the Arabidopsis H+/Ca2+ Antiporter CAX1 to Integrate Calcium Transport and Salt Tolerance. Journal of Biological Chemistry, 2004, 279, 2922-2926.	1.6	223
144	Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant Journal, 2005, 43, 273-283.	2.8	223

#	Article	IF	CITATIONS
145	An Effector of RNA-Directed DNA Methylation in Arabidopsis Is an ARGONAUTE 4- and RNA-Binding Protein. Cell, 2009, 137, 498-508.	13.5	220
146	Abiotic stress signal transduction in plants: Molecular and genetic perspectives. Physiologia Plantarum, 2001, 112, 152-166.	2.6	219
147	Gene editing in plants: progress and challenges. National Science Review, 2019, 6, 421-437.	4.6	215
148	Reactive oxygen species mediate Na ⁺ â€induced <i>SOS1</i> mRNA stability in Arabidopsis. Plant Journal, 2008, 53, 554-565.	2.8	214
149	Distinctive Core Histone Post-Translational Modification Patterns in Arabidopsis thaliana. PLoS ONE, 2007, 2, e1210.	1.1	213
150	Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Molecular Biology, 2002, 50, 543-550.	2.0	211
151	Salt Stress Signaling and Mechanisms of Plant Salt Tolerance. , 2006, 27, 141-177.		208
152	OSM1/SYP61: A Syntaxin Protein in Arabidopsis Controls Abscisic Acid–Mediated and Non-Abscisic Acid–Mediated Responses to Abiotic Stress. Plant Cell, 2002, 14, 3009-3028.	3.1	204
153	Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochemical Society Transactions, 2005, 33, 375-379.	1.6	204
154	Regulatory link between DNA methylation and active demethylation in <i>Arabidopsis</i> . Proceedings of the United States of America, 2015, 112, 3553-3557.	3.3	204
155	A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1388-1393.	3.3	203
156	Interaction of SOS2 with Nucleoside Diphosphate Kinase 2 and Catalases Reveals a Point of Connection between Salt Stress and H ₂ O ₂ Signaling in <i>Arabidopsis thaliana</i> . Molecular and Cellular Biology, 2007, 27, 7771-7780.	1.1	201
157	Development of germâ€lineâ€specific <scp>CRISPR</scp> â€Cas9 systems to improve the production of heritable gene modifications in <i>Arabidopsis</i> . Plant Biotechnology Journal, 2016, 14, 519-532.	4.1	199
158	Knockdown of Rice MicroRNA166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development. Plant Physiology, 2018, 176, 2082-2094.	2.3	198
159	Generation of new glutinous rice by CRISPR/Cas9â€ŧargeted mutagenesis of the <i>Waxy</i> gene in elite rice varieties. Journal of Integrative Plant Biology, 2018, 60, 369-375.	4.1	198
160	The SOS3 Family of Calcium Sensors and SOS2 Family of Protein Kinases in Arabidopsis. Plant Physiology, 2004, 134, 919-926.	2.3	197
161	A Protein Complex Required for Polymerase V Transcripts and RNA- Directed DNA Methylation in Arabidopsis. Current Biology, 2010, 20, 951-956.	1.8	195
162	Precise A·T to G·C Base Editing in the Rice Genome. Molecular Plant, 2018, 11, 627-630.	3.9	195

#	Article	IF	CITATIONS
163	A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Reports, 2016, 35, 1519-1533.	2.8	193
164	SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition. Plant Cell, 1996, 8, 617.	3.1	192
165	STABILIZED1, a Stress-Upregulated Nuclear Protein, Is Required for Pre-mRNA Splicing, mRNA Turnover, and Stress Tolerance in Arabidopsis. Plant Cell, 2006, 18, 1736-1749.	3.1	192
166	The Arabidopsis salt overly sensitive 4 Mutants Uncover a Critical Role for Vitamin B6 in Plant Salt Tolerance. Plant Cell, 2002, 14, 575-588.	3.1	191
167	Gene Targeting by Homology-Directed Repair inÂRice Using a Geminivirus-Based CRISPR/Cas9 System. Molecular Plant, 2017, 10, 1007-1010.	3.9	191
168	Global increase in DNA methylation during orange fruit development and ripening. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1430-1436.	3.3	190
169	Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biology, 2011, 11, 127.	1.6	187
170	Developing naturally stress-resistant crops for a sustainable agriculture. Nature Plants, 2018, 4, 989-996.	4.7	186
171	Learning from the Arabidopsis Experience. The Next Gene Search Paradigm. Plant Physiology, 2001, 127, 1354-1360.	2.3	183
172	A Putative Arabidopsis Nucleoporin, AtNUP160, Is Critical for RNA Export and Required for Plant Tolerance to Cold Stress. Molecular and Cellular Biology, 2006, 26, 9533-9543.	1.1	182
173	Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis. Plant Physiology, 2003, 132, 1041-1052.	2.3	181
174	CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nature Communications, 2018, 9, 1967.	5.8	178
175	A genomics approach towards salt stress tolerance. Plant Physiology and Biochemistry, 2001, 39, 295-311.	2.8	176
176	HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9966-9971.	3.3	173
177	Interaction of Osmotic Stress, Temperature, and Abscisic Acid in the Regulation of Gene Expression in Arabidopsis. Plant Physiology, 1999, 119, 205-212.	2.3	172
178	A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Research, 2017, 27, 1327-1340.	5.7	170
179	Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnology Journal, 2019, 17, 499-504.	4.1	168
180	An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Research, 2013, 23, 1043-1054.	5.7	167

#	Article	IF	CITATIONS
181	The Structure of the Arabidopsis thaliana SOS3: Molecular Mechanism of Sensing Calcium for Salt Stress Response. Journal of Molecular Biology, 2005, 345, 1253-1264.	2.0	166
182	Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant Journal, 2006, 46, 1-13.	2.8	164
183	Transgenic Evaluation of Activated Mutant Alleles of SOS2 Reveals a Critical Requirement for Its Kinase Activity and C-Terminal Regulatory Domain for Salt Tolerance in Arabidopsis thaliana. Plant Cell, 2004, 16, 435-449.	3.1	163
184	Annotating Genes of Known and Unknown Function by Large-Scale Coexpression Analysis Â. Plant Physiology, 2008, 147, 41-57.	2.3	162
185	An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation. Journal of General Virology, 2011, 92, 706-717.	1.3	160
186	Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21259-21264.	3.3	160
187	The BASL Polarity Protein Controls a MAPK Signaling Feedback Loop in Asymmetric Cell Division. Developmental Cell, 2015, 33, 136-149.	3.1	159
188	DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8290-8295.	3.3	158
189	High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biology, 2012, 12, 132.	1.6	157
190	Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proceedings of the United States of America, 2018, 115, E5400-E5409.	3.3	157
191	Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant Journal, 2003, 35, 574-587.	2.8	155
192	Stomatal Guard Cells Co-opted an Ancient ABA-Dependent Desiccation Survival System to Regulate Stomatal Closure. Current Biology, 2015, 25, 928-935.	1.8	154
193	Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity. Cell Reports, 2018, 23, 3340-3351.e5.	2.9	153
194	ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature, 2008, 455, 1259-1262.	13.7	150
195	The Plant Cuticle Is Required for Osmotic Stress Regulation of Abscisic Acid Biosynthesis and Osmotic Stress Tolerance in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 1971-1984.	3.1	147
196	The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications. Nature Plants, 2016, 2, 16169.	4.7	147
197	Downregulation of RdDM during strawberry fruit ripening. Genome Biology, 2018, 19, 212.	3.8	147
198	A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nature Communications, 2020, 11, 613.	5.8	147

#	Article	IF	CITATIONS
199	C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10893-10898.	3.3	146
200	Epigenetic Modifications and Plant Hormone Action. Molecular Plant, 2016, 9, 57-70.	3.9	146
201	Identification and mechanism of ABA receptor antagonism. Nature Structural and Molecular Biology, 2010, 17, 1102-1108.	3.6	145
202	An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7786-7791.	3.3	144
203	Sulfate availability affects <scp>ABA</scp> levels and germination response to <scp>ABA</scp> and salt stress in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2014, 77, 604-615.	2.8	143
204	UTR-Dependent Control of Gene Expression in Plants. Trends in Plant Science, 2018, 23, 248-259.	4.3	140
205	Mutations in ABO1/ELO2, a Subunit of Holo-Elongator, Increase Abscisic Acid Sensitivity and Drought Tolerance in Arabidopsis thaliana. Molecular and Cellular Biology, 2006, 26, 6902-6912.	1.1	138
206	Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10899-10904.	3.3	137
207	Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Molecular Biology, 2012, 78, 311-321.	2.0	136
208	The resurrection genome of <i>Boea hygrometrica</i> : A blueprint for survival of dehydration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5833-5837.	3.3	132
209	The genome of broomcorn millet. Nature Communications, 2019, 10, 436.	5.8	130
210	A role for arabinogalactan-proteins in root epidermal cell expansion. Planta, 1997, 203, 289-294.	1.6	129
211	EMS Mutagenesis of <i>Arabidopsis</i> ., 2006, 323, 101-104.		128
212	An Enhancer Mutant of Arabidopsis salt overly sensitive 3 Mediates both Ion Homeostasis and the Oxidative Stress Response. Molecular and Cellular Biology, 2007, 27, 5214-5224.	1.1	127
213	<i>Arabidopsis</i> proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18198-18203.	3.3	127
214	NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes and Development, 2009, 23, 318-330.	2.7	126
215	Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5277-5282.	3.3	126
216	Salt Stress Affects Cortical Microtubule Organization and Helical Growth in Arabidopsis. Plant and Cell Physiology, 2006, 47, 1158-1168.	1.5	125

#	Article	IF	CITATIONS
217	The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling. Cell Research, 2013, 23, 1380-1395.	5.7	125
218	Targeted, efficient sequence insertion and replacement in rice. Nature Biotechnology, 2020, 38, 1402-1407.	9.4	125
219	Altered ABA, proline and hydrogen peroxide in an Arabidopsis glutamate:glyoxylate aminotransferase mutant. Plant Molecular Biology, 2007, 64, 205-217.	2.0	124
220	The Structure of the C-Terminal Domain of the Protein Kinase AtSOS2 Bound to the Calcium Sensor AtSOS3. Molecular Cell, 2007, 26, 427-435.	4.5	123
221	Linking genes of unknown function with abiotic stress responses by highâ€ŧhroughput phenotype screening. Physiologia Plantarum, 2013, 148, 322-333.	2.6	123
222	The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Scientific Reports, 2016, 6, 27177.	1.6	121
223	Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Molecular Biology, 2008, 9, 6.	3.0	120
224	Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biology, 2012, 13, R20.	13.9	120
225	Cold responsive gene transcription becomes more complex. Trends in Plant Science, 2015, 20, 466-468.	4.3	119
226	Perspectives on the Application of Genome-Editing Technologies in Crop Breeding. Molecular Plant, 2019, 12, 1047-1059.	3.9	118
227	Biochemical Characterization of the Arabidopsis Protein Kinase SOS2 That Functions in Salt Tolerance. Plant Physiology, 2002, 130, 256-264.	2.3	117
228	Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. Journal of Experimental Botany, 2014, 65, 4119-4131.	2.4	117
229	Precision genome engineering in rice using prime editing system. Plant Biotechnology Journal, 2020, 18, 2167-2169.	4.1	117
230	A Rice Kinase-Protein Interaction Map Â. Plant Physiology, 2009, 149, 1478-1492.	2.3	116
231	LincRNA-ROR promotes invasion, metastasis and tumor growth in pancreatic cancer through activating ZEB1 pathway. Cancer Letters, 2016, 374, 261-271.	3.2	116
232	Transposable elements (<scp>TE</scp> s) contribute to stressâ€related long intergenic noncoding <scp>RNA</scp> s in plants. Plant Journal, 2017, 90, 133-146.	2.8	116
233	Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences. Molecular Plant, 2019, 12, 1003-1014.	3.9	116
234	A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant Journal, 2010, 63, no-no.	2.8	113

#	Article	IF	CITATIONS
235	Recognition of methylated DNA by TAL effectors. Cell Research, 2012, 22, 1502-1504.	5.7	113
236	The Methyl-CpG-Binding Protein MBD7 Facilitates Active DNA Demethylation to Limit DNA Hyper-Methylation and Transcriptional Gene Silencing. Molecular Cell, 2015, 57, 971-983.	4.5	112
237	Loss of salt tolerance during tomato domestication conferred by variation in a Na ⁺ /K ⁺ transporter. EMBO Journal, 2020, 39, e103256.	3.5	112
238	Genome Editing—Principles and Applications for Functional Genomics Research and Crop Improvement. Critical Reviews in Plant Sciences, 2017, 36, 291-309.	2.7	111
239	EAR1 Negatively Regulates ABA Signaling by Enhancing 2C Protein Phosphatase Activity. Plant Cell, 2018, 30, 815-834.	3.1	111
240	Molecular genetic analysis of cold–regulated gene transcription. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 877-886.	1.8	109
241	A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10211-10216.	3.3	109
242	Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Science, 2004, 166, 609-616.	1.7	108
243	Combining chemical and genetic approaches to increase drought resistance in plants. Nature Communications, 2017, 8, 1183.	5.8	108
244	Genome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sativa. Genome Research, 2008, 19, 70-78.	2.4	107
245	The inhibition of protein translation mediated by AtGCN1 is essential for cold tolerance in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2017, 40, 56-68.	2.8	107
246	The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice. Nature Communications, 2019, 10, 3822.	5.8	107
247	Enrichment of vitronectin- and fibronectin-like proteins in NaCl-adapted plant cells and evidence for their involvement in plasma membrane-cell wall adhesion. Plant Journal, 1993, 3, 637-646.	2.8	106
248	STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Research, 2013, 41, 1984-1997.	6.5	105
249	An Arabidopsis PWI and RRM motif-containing protein is critical for pre-mRNA splicing and ABA responses. Nature Communications, 2015, 6, 8139.	5.8	105
250	New developments in abscisic acid perception and metabolism. Current Opinion in Plant Biology, 2007, 10, 447-452.	3.5	103
251	Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Molecular Biology, 2012, 78, 407-416.	2.0	103
252	SOS4, A Pyridoxal Kinase Gene, Is Required for Root Hair Development in Arabidopsis. Plant Physiology, 2002, 129, 585-593.	2.3	102

#	Article	IF	CITATIONS
253	Dolichol Biosynthesis and Its Effects on the Unfolded Protein Response and Abiotic Stress Resistance in <i>Arabidopsis</i> Â Â. Plant Cell, 2008, 20, 1879-1898.	3.1	102
254	<i>Arabidopsis</i> EDM2 promotes <i>IBM1</i> distal polyadenylation and regulates genome DNA methylation patterns. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 527-532.	3.3	102
255	Mapping proteome-wide targets of protein kinases in plant stress responses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3270-3280.	3.3	102
256	RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5669-5674.	3.3	100
257	Cold Transiently Activates Calcium-Permeable Channels in Arabidopsis Mesophyll Cells. Plant Physiology, 2007, 143, 487-494.	2.3	98
258	Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium quinoa. Current Biology, 2018, 28, 3075-3085.e7.	1.8	98
259	Genome Structures and Halophyte-Specific Gene Expression of the Extremophile <i>Thellungiella parvula</i> in Comparison with <i>Thellungiella salsuginea</i> (<i>Thellungiella halophila</i>) and Arabidopsis. Plant Physiology, 2010, 154, 1040-1052.	2.3	97
260	CYCLIN-DEPENDENT KINASE8 Differentially Regulates Plant Immunity to Fungal Pathogens through Kinase-Dependent and -Independent Functions in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 4149-4170.	3.1	96
261	Dicer-independent RNA-directed DNA methylation in Arabidopsis. Cell Research, 2016, 26, 66-82.	5.7	95
262	An essential role for the Id1/PI3K/Akt/NFkB/survivin signalling pathway in promoting the proliferation of endothelial progenitor cells in vitro. Molecular and Cellular Biochemistry, 2012, 363, 135-145.	1.4	94
263	A higher plant extracellular vitronectin-like adhesion protein is related to the translational elongation factor-1 alpha Plant Cell, 1994, 6, 393-404.	3.1	93
264	Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant. Plant Journal, 1999, 17, 301-308.	2.8	93
265	Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Research, 2005, 33, 4443-4454.	6.5	92
266	A conserved transcriptional regulator is required for RNA-directed DNA methylation and plant development. Genes and Development, 2009, 23, 2717-2722.	2.7	92
267	RNA-binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin-containing gene <i>IBM1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15467-15472.	3.3	91
268	The miR165/166 Mediated Regulatory Module Plays Critical Roles in ABA Homeostasis and Response in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006416.	1.5	91
269	Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought. Nature Plants, 2022, 8, 68-77.	4.7	91
270	Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation. Nature Communications, 2014, 5, 4062.	5.8	90

#	Article	IF	CITATIONS
271	Specific but interdependent functions for <i> <scp>A</scp> rabidopsis </i> <scp>AGO</scp> 4 and <scp>AGO</scp> 6 in <scp>RNA</scp> â€directed <scp>DNA</scp> methylation. EMBO Journal, 2015, 34, 581-592.	3.5	90
272	Structural basis for RNA recognition by a dimeric PPR-protein complex. Nature Structural and Molecular Biology, 2013, 20, 1377-1382.	3.6	89
273	Precise genome modification in tomato using an improved prime editing system. Plant Biotechnology Journal, 2021, 19, 415-417.	4.1	89
274	Mutation of SAD2, an importin β-domain protein in Arabidopsis, alters abscisic acid sensitivity. Plant Journal, 2006, 47, 776-787.	2.8	87
275	RNA-directed DNA methylation and demethylation in plants. Science in China Series C: Life Sciences, 2009, 52, 331-343.	1.3	87
276	The SnRK2 kinases modulate miRNA accumulation in Arabidopsis. PLoS Genetics, 2017, 13, e1006753.	1.5	87
277	Multiplex gene editing in rice with simplified CRISPR pf1 and CRISPR as9 systems. Journal of Integrative Plant Biology, 2018, 60, 626-631.	4.1	87
278	Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nature Communications, 2021, 12, 2456.	5.8	86
279	Genetic Analysis of Osmotic and Cold Stress Signal Transduction in Arabidopsis: Interactions and Convergence of Abscisic Acid-Dependent and Abscisic Acid-Independent Pathways. Plant Cell, 1997, 9, 1935.	3.1	85
280	Osmotic stress signaling via protein kinases. Cellular and Molecular Life Sciences, 2012, 69, 3165-3173.	2.4	85
281	Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins. Plant Signaling and Behavior, 2015, 10, e1031939.	1.2	84
282	Antisilencing role of the RNA-directed DNA methylation pathway and a histone acetyltransferase in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11425-11430.	3.3	83
283	The Flowering Repressor SVP Confers Drought Resistance in Arabidopsis by Regulating Abscisic Acid Catabolism. Molecular Plant, 2018, 11, 1184-1197.	3.9	83
284	Regenerant Arabidopsis Lineages Display a Distinct Genome-Wide Spectrum of Mutations Conferring Variant Phenotypes. Current Biology, 2011, 21, 1385-1390.	1.8	82
285	The transcription factor ICE1 functions in cold stress response by binding to the promoters of <i>CBF</i> and <i>COR</i> genes. Journal of Integrative Plant Biology, 2020, 62, 258-263.	4.1	82
286	A DNA 3′ Phosphatase Functions in Active DNA Demethylation in Arabidopsis. Molecular Cell, 2012, 45, 357-370.	4.5	81
287	DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nature Communications, 2022, 13, 1335.	5.8	81
288	Micro RNAs and Short-interfering RNAs in Plants. Journal of Integrative Plant Biology, 2007, 49, 817-826.	4.1	80

#	Article	IF	CITATIONS
289	A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Research, 2017, 27, 226-240.	5.7	80
290	Disruption of Arabidopsis CHY1 Reveals an Important Role of Metabolic Status in Plant Cold Stress Signaling. Molecular Plant, 2009, 2, 59-72.	3.9	79
291	Methylation interactions in <i>Arabidopsis</i> hybrids require RNA-directed DNA methylation and are influenced by genetic variation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4248-56.	3.3	79
292	Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8557-8561.	3.3	78
293	Osmogenetics: Aristotle to Arabidopsis. Plant Cell, 2006, 18, 1542-1557.	3.1	78
294	Functional geneâ€mining for saltâ€ŧolerance genes with the power of Arabidopsis. Plant Journal, 2008, 56, 653-664.	2.8	77
295	Sulfamethazine Suppresses Epigenetic Silencing in <i>Arabidopsis</i> by Impairing Folate Synthesis. Plant Cell, 2012, 24, 1230-1241.	3.1	77
296	Interactions between soybean ABA receptors and type 2C protein phosphatases. Plant Molecular Biology, 2013, 83, 651-664.	2.0	77
297	A protein complex regulates RNA processing of intronic heterochromatin-containing genes in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7377-E7384.	3.3	74
298	Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16641-16650.	3.3	73
299	HOS5-a negative regulator of osmotic stress-induced gene expression in Arabidopsis thaliana. Plant Journal, 1999, 19, 569-578.	2.8	72
300	DNA Replication Factor C1 Mediates Genomic Stability and Transcriptional Gene Silencing in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 2336-2352.	3.1	72
301	An Arabidopsis Nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLoS Genetics, 2017, 13, e1007124.	1.5	72
302	A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. Nature Communications, 2018, 9, 460.	5.8	72
303	EL1-like Casein Kinases Suppress ABA Signaling and Responses by Phosphorylating and Destabilizing the ABA Receptors PYR/PYLs in Arabidopsis. Molecular Plant, 2018, 11, 706-719.	3.9	72
304	Simplified adenine base editors improve adenine base editing efficiency in rice. Plant Biotechnology Journal, 2020, 18, 770-778.	4.1	72
305	Reconstituting plant miRNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9851-9852.	3.3	71
306	Epigenome Sequencing Comes of Age. Cell, 2008, 133, 395-397.	13.5	71

#	Article	IF	CITATIONS
307	Aequorin-Based Luminescence Imaging Reveals Stimulus- and Tissue-Specific Ca2+ Dynamics in Arabidopsis Plants. Molecular Plant, 2013, 6, 444-455.	3.9	71
308	Mutations in <i><scp>MIR</scp>396e</i> and <i><scp>MIR</scp>396f</i> increase grain size and modulate shoot architecture in rice. Plant Biotechnology Journal, 2020, 18, 491-501.	4.1	71
309	Disruption of <i>MIR396e</i> and <i>MIR396f</i> improves rice yield under nitrogen-deficient conditions. National Science Review, 2020, 7, 102-112.	4.6	71
310	Reduced Na+ Uptake in the NaCl-Hypersensitive sos1 Mutant of Arabidopsis thaliana. Plant Physiology, 1997, 113, 795-799.	2.3	70
311	Genome editing for plant research and crop improvement. Journal of Integrative Plant Biology, 2021, 63, 3-33.	4.1	70
312	Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Functional and Integrative Genomics, 2010, 10, 187-190.	1.4	69
313	A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon <i>Tos17</i> and promotes its transposition in rice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15498-15503.	3.3	69
314	Plant salt tolerance. Topics in Current Genetics, 0, , 241-270.	0.7	68
315	Mutations in a Conserved Replication Protein Suppress Transcriptional Gene Silencing in a DNA- Methylation-Independent Manner in Arabidopsis. Current Biology, 2005, 15, 1912-1918.	1.8	68
316	Plasma-membrane H+-ATPase gene expression is regulated by NaCl in cells of the halophyte Atriplex nummularia L Planta, 1993, 190, 433-8.	1.6	67
317	Membrane-trafficking RabA4c involved in the effect of glycine betaine on recovery from chilling stress in Arabidopsis. Physiologia Plantarum, 2007, 130, 511-518.	2.6	67
318	Chemical Manipulation of Abscisic Acid Signaling: A New Approach to Abiotic and Biotic Stress Management in Agriculture. Advanced Science, 2020, 7, 2001265.	5.6	67
319	Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. Nature Communications, 2018, 9, 4547.	5.8	66
320	Rhizobacteriumâ€derived diacetyl modulates plant immunity in a phosphateâ€dependent manner. EMBO Journal, 2020, 39, e102602.	3.5	66
321	Constitutive Activation and Transgenic Evaluation of the Function of an Arabidopsis PKS Protein Kinase. Journal of Biological Chemistry, 2002, 277, 42088-42096.	1.6	65
322	Abiotic Stress Tolerance: From Gene Discovery in Model Organisms to Crop Improvement. Molecular Plant, 2009, 2, 1-2.	3.9	65
323	Molecular Cloning and Different Expression of a Vacuolar Na ⁺ /H ⁺ antiporter gene in Suaeda salsa Under Salt Stress. Biologia Plantarum, 2004, 48, 219-225.	1.9	64
324	What makes species unique? The contribution of proteins with obscure features. Genome Biology, 2006, 7, R57.	13.9	64

#	Article	IF	CITATIONS
325	Upstream kinases of plant Sn <scp>RK</scp> s are involved in salt stress tolerance. Plant Journal, 2018, 93, 107-118.	2.8	64
326	Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis. New Phytologist, 2019, 224, 274-290.	3.5	64
327	Salt Tolerance. The Arabidopsis Book, 2002, 1, e0048.	0.5	63
328	Preventing transcriptional gene silencing by active DNA demethylation. FEBS Letters, 2005, 579, 5889-5898.	1.3	62
329	Quantitative Measurement of Phosphoproteome Response to Osmotic Stress in Arabidopsis Based on Library-Assisted eXtracted Ion Chromatogram (LAXIC). Molecular and Cellular Proteomics, 2013, 12, 2354-2369.	2.5	62
330	The <scp>A</scp> rabidopsis <scp>STRESS RESPONSE SUPPRESSOR DEAD</scp> â€box <scp>RNA</scp> helicases are nucleolar―and chromocenterâ€localized proteins that undergo stressâ€mediated relocalization and are involved in epigenetic gene silencing. Plant Journal, 2014, 79, 28-43.	2.8	62
331	Biochemical and Functional Characterization of PKS11, a Novel Arabidopsis Protein Kinase. Journal of Biological Chemistry, 2002, 277, 28340-28350.	1.6	61
332	Endoplasmic reticulumâ€associated Nâ€glycan degradation of coldâ€upregulated glycoproteins in response to chilling stress in <i>Arabidopsis</i> . New Phytologist, 2016, 212, 282-296.	3.5	61
333	Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling. PLoS Genetics, 2016, 12, e1005835.	1.5	61
334	Molecular Aspects of Osmotic Stress in Plants. Critical Reviews in Plant Sciences, 1997, 16, 253-278.	2.7	60
335	A single amino acid substitution in the Arabidopsis FIERY1/HOS2 protein confers cold signaling specificity and lithium tolerance. Plant Journal, 2004, 40, 536-545.	2.8	58
336	A Pre-mRNA-Splicing Factor Is Required for RNA-Directed DNA Methylation in Arabidopsis. PLoS Genetics, 2013, 9, e1003779.	1.5	58
337	A Role for PICKLE in the Regulation of Cold and Salt Stress Tolerance in Arabidopsis. Frontiers in Plant Science, 2019, 10, 900.	1.7	58
338	Optimizing base editors for improved efficiency and expanded editing scope in rice. Plant Biotechnology Journal, 2019, 17, 1697-1699.	4.1	58
339	Different roles for calcium and calmodulin in phytochrome―and UVâ€regulated expression of chalcone synthase. Plant Journal, 1998, 13, 763-772.	2.8	57
340	ROR1/RPA2A, a Putative Replication Protein A2, Functions in Epigenetic Gene Silencing and in Regulation of Meristem Development in Arabidopsis. Plant Cell, 2005, 18, 85-103.	3.1	57
341	Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana. Nucleic Acids Research, 2018, 46, 1777-1792.	6.5	57
342	Universal Plant Phosphoproteomics Workflow and Its Application to Tomato Signaling in Response to Cold Stress*. Molecular and Cellular Proteomics, 2018, 17, 2068-2080.	2.5	57

#	Article	IF	CITATIONS
343	An SGS3-like protein functions in RNA-directed DNA methylation and transcriptional gene silencing in Arabidopsis. Plant Journal, 2010, 62, 92-99.	2.8	55
344	The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism. Cell Discovery, 2016, 2, 16027.	3.1	55
345	<scp>TALEN</scp> â€mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnology Journal, 2016, 14, 186-194.	4.1	55
346	Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP kinases to SPEECHLESS. Nature Plants, 2019, 5, 742-754.	4.7	55
347	Folate Polyglutamylation Is Involved in Chromatin Silencing by Maintaining Global DNA Methylation and Histone H3K9 Dimethylation in Arabidopsis. Plant Cell, 2013, 25, 2545-2559.	3.1	54
348	<i><scp>RDM</scp>4</i> modulates cold stress resistance in <i>Arabidopsis</i> partially through the <i><scp>CBF</scp></i> â€mediated pathway. New Phytologist, 2016, 209, 1527-1539.	3.5	54
349	Characterization and DNA-Binding Specificities of Ralstonia TAL-Like Effectors. Molecular Plant, 2013, 6, 1318-1330.	3.9	53
350	Structure of a PLS-class Pentatricopeptide Repeat Protein Provides Insights into Mechanism of RNA Recognition. Journal of Biological Chemistry, 2013, 288, 31540-31548.	1.6	53
351	Mechanisms of Small RNA Generation from Cis-NATs in Response to Environmental and Developmental Cues. Molecular Plant, 2013, 6, 704-715.	3.9	53
352	An AP Endonuclease Functions in Active DNA Demethylation and Gene Imprinting in Arabidopsis. PLoS Genetics, 2015, 11, e1004905.	1.5	53
353	An Autophosphorylation Site of the Protein Kinase SOS2 Is Important for Salt Tolerance in Arabidopsis. Molecular Plant, 2009, 2, 183-190.	3.9	52
354	The splicing machinery promotes RNA-directed DNA methylation and transcriptional silencing in Arabidopsis. EMBO Journal, 2013, 32, 1128-1140.	3.5	52
355	STCH4/REIL2 Confers Cold Stress Tolerance in Arabidopsis by Promoting rRNA Processing and CBF Protein Translation. Cell Reports, 2020, 30, 229-242.e5.	2.9	52
356	Epigenetic memory marks determine epiallele stability at loci targeted by de novo DNA methylation. Nature Plants, 2020, 6, 661-674.	4.7	52
357	Loss of arabinogalactan-proteins from the plasma membrane of NaCl-adapted tobacco cells. Planta, 1993, 190, 221.	1.6	51
358	Genetic Analysis of Salt Tolerance in Arabidopsis: Evidence for a Critical Role of Potassium Nutrition. Plant Cell, 1998, 10, 1181.	3.1	51
359	Methyl-CpG-Binding Domain Protein MBD7 Is Required for Active DNA Demethylation in Arabidopsis Â. Plant Physiology, 2015, 167, 905-914.	2.3	51
360	Control of Plant Water Use by ABA Induction of Senescence and Dormancy: An Overlooked Lesson from Evolution. Plant and Cell Physiology, 2017, 58, 1319-1327.	1.5	51

#	Article	IF	CITATIONS
361	Interaction network of core ABA signaling components in maize. Plant Molecular Biology, 2018, 96, 245-263.	2.0	51
362	Nucleocytoplasmic Trafficking of the Arabidopsis WD40 Repeat Protein XIW1 Regulates ABI5 Stability and Abscisic Acid Responses. Molecular Plant, 2019, 12, 1598-1611.	3.9	51
363	ROP11 GTPase Negatively Regulates ABA Signaling by Protecting ABI1 Phosphatase Activity from Inhibition by the ABA Receptor RCAR1/PYL9 in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2012, 54, 180-188.	4.1	50
364	CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in <i>Arabidopsis</i> . New Phytologist, 2020, 228, 1573-1590.	3.5	50
365	The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. National Science Review, 2021, 8, nwaa149.	4.6	50
366	The protein kinase TOUSLED is required for maintenance of transcriptional gene silencing in Arabidopsis. EMBO Reports, 2007, 8, 77-83.	2.0	49
367	Active DNA demethylation by oxidation and repair. Cell Research, 2011, 21, 1649-1651.	5.7	49
368	Critical function of DNA methyltransferase 1 in tomato development and regulation of the DNA methylome and transcriptome. Journal of Integrative Plant Biology, 2019, 61, 1224-1242.	4.1	49
369	SIK1/SOS2 networks: decoding sodium signals via calcium-responsive protein kinase pathways. Pflugers Archiv European Journal of Physiology, 2009, 458, 613-619.	1.3	48
370	DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nature Plants, 2020, 6, 983-995.	4.7	48
371	Two Chloroplast Proteins Suppress Drought Resistance by Affecting ROS Production in Guard Cells. Plant Physiology, 2016, 172, 2491-2503.	2.3	47
372	A Novel Chemical Inhibitor of ABA Signaling Targets All ABA Receptors. Plant Physiology, 2017, 173, 2356-2369.	2.3	47
373	DNA demethylase ROS1 negatively regulates the imprinting of <i>DOGL4</i> and seed dormancy in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9962-E9970.	3.3	46
374	An Rrp6-like Protein Positively Regulates Noncoding RNA Levels and DNA Methylation in Arabidopsis. Molecular Cell, 2014, 54, 418-430.	4.5	45
375	Retrospective and perspective of plant epigenetics in China. Journal of Genetics and Genomics, 2018, 45, 621-638.	1.7	45
376	Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis. PLoS Genetics, 2016, 12, e1006027.	1.5	45
377	Transcriptomic and Physiological Variations of Three Arabidopsis Ecotypes in Response to Salt Stress. PLoS ONE, 2013, 8, e69036.	1.1	45
378	Bioinformatics analysis suggests base modifications of tRNAs and miRNAs in Arabidopsis thaliana. BMC Genomics, 2009, 10, 155.	1.2	44

#	Article	IF	CITATIONS
379	Regulation of Active DNA Demethylation by an α-Crystallin Domain Protein in Arabidopsis. Molecular Cell, 2014, 55, 361-371.	4.5	44
380	The developmental regulator PKL is required to maintain correct DNA methylation patterns at RNA-directed DNA methylation loci. Genome Biology, 2017, 18, 103.	3.8	44
381	Heritability of targeted gene modifications induced by plant-optimized CRISPR systems. Cellular and Molecular Life Sciences, 2017, 74, 1075-1093.	2.4	44
382	A group of SUVH methylâ€ÐNA binding proteins regulate expression of the DNA demethylase ROS1 in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2019, 61, 110-119.	4.1	44
383	A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice. Nature Plants, 2021, 7, 1445-1452.	4.7	44
384	Screening for Gene Regulation Mutants by Bioluminescence Imaging. Science Signaling, 2002, 2002, pl10-pl10.	1.6	43
385	Roles of Nuclear Pores and Nucleo-cytoplasmic Trafficking in Plant Stress Responses. Frontiers in Plant Science, 2017, 08, 574.	1.7	43
386	A Highly Efficient Cell Division-Specific CRISPR/Cas9 System Generates Homozygous Mutants for Multiple Genes in Arabidopsis. International Journal of Molecular Sciences, 2018, 19, 3925.	1.8	43
387	Natural variations in <i>SISOS1</i> contribute to the loss of salt tolerance during tomato domestication. Plant Biotechnology Journal, 2021, 19, 20-22.	4.1	43
388	MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis. PLoS Genetics, 2015, 11, e1005559.	1.5	43
389	Identification of Extracellular Signal-regulated Kinase 1 (ERK1) Direct Substrates using Stable Isotope Labeled Kinase Assay-Linked Phosphoproteomics. Molecular and Cellular Proteomics, 2014, 13, 3199-3210.	2.5	41
390	The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis Â. Plant Physiology, 2014, 167, 137-152.	2.3	41
391	Analysis of gene expression profiles in Arabidopsis salt overly sensitive mutants sos2-1 and sos3 -1. Plant, Cell and Environment, 2005, 28, 1267-1275.	2.8	40
392	The Structure of Arabidopsis thaliana OST1 Provides Insights into the Kinase Regulation Mechanism in Response to Osmotic Stress. Journal of Molecular Biology, 2011, 414, 135-144.	2.0	40
393	Arabidopsis Serine Decarboxylase Mutants Implicate the Roles of Ethanolamine in Plant Growth and Development. International Journal of Molecular Sciences, 2012, 13, 3176-3188.	1.8	40
394	The PRP6-like splicing factor STA1 is involved in RNA-directed DNA methylation by facilitating the production of Pol V-dependent scaffold RNAs. Nucleic Acids Research, 2013, 41, 8489-8502.	6.5	40
395	Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems. Genome Biology, 2018, 19, 149.	3.8	40
396	A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body. ELife, 2020, 9, .	2.8	40

#	Article	IF	CITATIONS
397	The tomato OST1–VOZ1 module regulates drought-mediated flowering. Plant Cell, 2022, 34, 2001-2018.	3.1	40
398	Expression, Activation, and Biochemical Properties of a Novel Arabidopsis Protein Kinase. Plant Physiology, 2002, 129, 225-234.	2.3	39
399	BONZAI Proteins Control Global Osmotic Stress Responses in Plants. Current Biology, 2020, 30, 4815-4825.e4.	1.8	39
400	SUVR2 is involved in transcriptional gene silencing by associating with SNF2-related chromatin-remodeling proteins in Arabidopsis. Cell Research, 2014, 24, 1445-1465.	5.7	38
401	Coupling of H3K27me3 recognition with transcriptional repression through the BAH-PHD-CPL2 complex in Arabidopsis. Nature Communications, 2020, 11, 6212.	5.8	38
402	Protein-Protein Interactions of Tandem Affinity Purified Protein Kinases from Rice. PLoS ONE, 2009, 4, e6685.	1.1	37
403	Phenotypic Analysis of <i>Arabidopsis</i> Mutants: Electrolyte Leakage after Freezing Stress. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot4970.	0.2	37
404	A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes: Figure 1 Genes and Development, 2010, 24, 853-856.	2.7	37
405	Nitric Oxide and Hydrogen Peroxide Mediate Wounding-Induced Freezing Tolerance through Modifications in Photosystem and Antioxidant System in Wheat. Frontiers in Plant Science, 2017, 8, 1284.	1.7	37
406	Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure. Nature Communications, 2021, 12, 7040.	5.8	37
407	The plasmaâ€membrane polyamine transporter PUT3 is regulated by the Na ⁺ /H ⁺ antiporter SOS1 and protein kinase SOS2. New Phytologist, 2020, 226, 785-797.	3.5	36
408	The broad roles of <i>CBF</i> genes: From development to abiotic stress. Plant Signaling and Behavior, 2016, 11, e1215794.	1.2	35
409	A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana. Science Bulletin, 2015, 60, 1332-1347.	4.3	34
410	Efficient Generation of diRNAs Requires Components in the Posttranscriptional Gene Silencing Pathway. Scientific Reports, 2017, 7, 301.	1.6	34
411	Creation of aromatic maize by CRISPR/Cas. Journal of Integrative Plant Biology, 2021, 63, 1664-1670.	4.1	34
412	An atypical component of RNA-directed DNA methylation machinery has both DNA methylation-dependent and -independent roles in locus-specific transcriptional gene silencing. Cell Research, 2011, 21, 1691-1700.	5.7	33
413	Protocol: a beginner's guide to the analysis of RNA-directed DNA methylation in plants. Plant Methods, 2014, 10, 18.	1.9	32
414	<i>DEMETER</i> plays a role in DNA demethylation and disease response in somatic tissues of Arabidopsis. Epigenetics, 2019, 14, 1074-1087.	1.3	32

#	Article	IF	CITATIONS
415	Peroxisomal β-oxidation regulates histone acetylation and DNA methylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10576-10585.	3.3	32
416	Two Chloroplast Proteins Negatively Regulate Plant Drought Resistance Through Separate Pathways. Plant Physiology, 2020, 182, 1007-1021.	2.3	32
417	RNA-directed DNA methylation in plants. RNA Biology, 2013, 10, 1593-1596.	1.5	31
418	The Role of the Epigenome in Gene Expression Control and the Epimark Changes in Response to the Environment. Critical Reviews in Plant Sciences, 2014, 33, 64-87.	2.7	31
419	An Atriplex nummularia cDNA with Sequence Relatedness to the Algal Caltractin Gene. Plant Physiology, 1992, 99, 1734-1735.	2.3	30
420	De novo assembly and analysis of the transcriptome of Ocimum americanum var. pilosum under cold stress. BMC Genomics, 2016, 17, 209.	1.2	30
421	Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor. Journal of Integrative Plant Biology, 2021, 63, 1595-1599.	4.1	30
422	A DNA ligase required for active DNA demethylation and genomic imprinting in Arabidopsis. Cell Research, 2015, 25, 757-760.	5.7	29
423	Molecular Characterization of Functional Domains in the Protein Kinase SOS2 That Is Required for Plant Salt Tolerance. Plant Cell, 2001, 13, 1383.	3.1	28
424	DNA methylation markers in the diagnosis and prognosis of common leukemias. Signal Transduction and Targeted Therapy, 2020, 5, 3.	7.1	27
425	Roles of DEMETER in regulating DNA methylation in vegetative tissues and pathogen resistance. Journal of Integrative Plant Biology, 2021, 63, 691-706.	4.1	26
426	H2O2 Inhibits ABA-Signaling Protein Phosphatase HAB1. PLoS ONE, 2014, 9, e113643.	1.1	25
427	Small Rnas: Big Role In Abiotic Stress Tolerance Of Plants. , 2007, , 223-260.		25
428	<scp>HOS</scp> 1 regulates Argonaute1 by promoting transcription of the micro <scp>RNA</scp> gene <i><scp>MIR</scp>168b</i> in Arabidopsis. Plant Journal, 2015, 81, 861-870.	2.8	24
429	Impaired lipid metabolism by age-dependent DNA methylation alterations accelerates aging. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4328-4336.	3.3	24
430	Improvement of base editors and prime editors advances precision genome engineering in plants. Plant Physiology, 2022, 188, 1795-1810.	2.3	24
431	Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	24
432	Gene targeting in <i>Arabidopsis</i> via an allâ€inâ€one strategy that uses a translational enhancer to aid Cas9 expression. Plant Biotechnology Journal, 2020, 18, 892-894.	4.1	23

#	Article	IF	CITATIONS
433	Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 802-815.	4.1	23
434	Efficient Câ€ŧoâ€G editing in rice using an optimized base editor. Plant Biotechnology Journal, 2022, 20, 1238-1240.	4.1	23
435	SNP calling using genotype model selection on high-throughput sequencing data. Bioinformatics, 2012, 28, 643-650.	1.8	22
436	Asg1 is a stress-inducible gene which increases stomatal resistance in salt stressed potato. Journal of Plant Physiology, 2012, 169, 1849-1857.	1.6	22
437	Four putative SWI2/SNF2 chromatin remodelers have dual roles in regulating DNA methylation in Arabidopsis. Cell Discovery, 2018, 4, 55.	3.1	22
438	Reciprocal regulation between nicotinamide adenine dinucleotide metabolism and abscisic acid and stress response pathways in Arabidopsis. PLoS Genetics, 2020, 16, e1008892.	1.5	22
439	Emerging roles of RNA processing factors in regulating long non-coding RNAs. RNA Biology, 2014, 11, 793-797.	1.5	21
440	Demethylation of ERECTA receptor genes by IBM1 histone demethylase affects stomatal development. Development (Cambridge), 2016, 143, 4452-4461.	1.2	21
441	SAC3B, a central component of the mRNA export complex TREX-2, is required for prevention of epigenetic gene silencing in <i>Arabidopsis</i> . Nucleic Acids Research, 2017, 45, 181-197.	6.5	21
442	MYC-type transcription factors, MYC67 and MYC70, interact with ICE1 and negatively regulate cold tolerance in Arabidopsis. Scientific Reports, 2018, 8, 11622.	1.6	21
443	A histone H3K4me1-specific binding protein is required for siRNA accumulation and DNA methylation at a subset of loci targeted by RNA-directed DNA methylation. Nature Communications, 2021, 12, 3367.	5.8	21
444	HOS1, a Genetic Locus Involved in Cold-Responsive Gene Expression in Arabidopsis. Plant Cell, 1998, 10, 1151.	3.1	20
445	High Throughput Screening of Signal Transduction Mutants With Luciferase Imaging. Plant Molecular Biology Reporter, 1999, 17, 159-170.	1.0	20
446	SIZ1-Mediated SUMOylation ofÂROS1 Enhances Its Stability and Positively Regulates Active DNA Demethylation in Arabidopsis. Molecular Plant, 2020, 13, 1816-1824.	3.9	20
447	Transcription of Nuclear Organellar DNA in a Model Plant System. Genome Biology and Evolution, 2014, 6, 1327-1334.	1.1	18
448	Genomeâ€wide distribution and functions of the AAE complex in epigenetic regulation in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 707-722.	4.1	18
449	Pathway conversion enables a double-lock mechanism to maintain DNA methylation and genome stability. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
450	Catalytic mechanism and kinase interactions of ABA-signaling PP2C phosphatases. Plant Signaling and Behavior, 2012, 7, 581-588.	1.2	17

#	Article	IF	CITATIONS
451	Increasing Freezing Tolerance: Kinase Regulation of ICE1. Developmental Cell, 2015, 32, 257-258.	3.1	17
452	Requirement for flap endonuclease 1 (<i><scp>FEN</scp>1</i>) to maintain genomic stability and transcriptional gene silencing in Arabidopsis. Plant Journal, 2016, 87, 629-640.	2.8	17
453	Accession-Dependent CBF Gene Deletion by CRISPR/Cas System in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1910.	1.7	17
454	Precision genome editing heralds rapid de novo domestication for new crops. Cell, 2021, 184, 1133-1134.	13.5	17
455	Novel <i>Wx</i> alleles generated by base editing for improvement of rice grain quality. Journal of Integrative Plant Biology, 2021, 63, 1632-1638.	4.1	17
456	Seeing the forest for the trees: a wide perspective on RNA-directed DNA methylation: Figure 1 Genes and Development, 2012, 26, 1769-1773.	2.7	16
457	Chemical probes in plant epigenetics studies. Plant Signaling and Behavior, 2013, 8, e25364.	1.2	16
458	SALT OVERLY SENSITIVE 2 (SOS2) and Interacting Partners SOS3 and ABSCISIC ACID–INSENSITIVE 2 (ABI2) Promote Red-Light-Dependent Germination and Seedling Deetiolation in <i>Arabidopsis</i> . International Journal of Plant Sciences, 2017, 178, 485-493.	0.6	16
459	Structure determination and activity manipulation of the turfgrass ABA receptor FePYR1. Scientific Reports, 2017, 7, 14022.	1.6	16
460	A novel protein complex that regulates active DNA demethylation in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 772-786.	4.1	16
461	Intragenic heterochromatinâ€mediated alternative polyadenylation modulates miRNA and pollen development in rice. New Phytologist, 2021, 232, 835-852.	3.5	16
462	Epigenetics of the epigenome. Current Opinion in Plant Biology, 2011, 14, 113-115.	3.5	15
463	The second subunit of DNA-polymerase delta is required for genomic stability and epigenetic regulation. Plant Physiology, 2016, 171, pp.01976.2015.	2.3	15
464	Dicer-like proteins influence Arabidopsis root microbiota independent of RNA-directed DNA methylation. Microbiome, 2021, 9, 57.	4.9	15
465	Expression of an Atriplex nummularia Gene Encoding a Protein Homologous to the Bacterial Molecular Chaperone DnaJ. Plant Cell, 1993, 5, 341.	3.1	15
466	RNA Splicing Factors and RNA-Directed DNA Methylation. Biology, 2014, 3, 243-254.	1.3	14
467	CRISPR/Cas9-Based Genome Editing Toolbox for Arabidopsis thaliana. Methods in Molecular Biology, 2021, 2200, 121-146.	0.4	14
468	A domesticated <i>Harbinger</i> transposase forms a complex with HDA6 and promotes histone H3 deacetylation at genes but not TEs in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 1462-1474.	4.1	14

#	Article	IF	CITATIONS
469	How Many Ways Are There to Generate Small RNAs?. Molecular Cell, 2010, 38, 775-777.	4.5	13
470	Involvement of Multiple Gene-Silencing Pathways in a Paramutation-like Phenomenon in Arabidopsis. Cell Reports, 2015, 11, 1160-1167.	2.9	13
471	The 1001 Arabidopsis DNA Methylomes: An Important Resource for Studying Natural Genetic, Epigenetic, and Phenotypic Variation. Trends in Plant Science, 2016, 21, 906-908.	4.3	13
472	TPST is involved in fructose regulation of primary root growth in Arabidopsis thaliana. Plant Molecular Biology, 2020, 103, 511-525.	2.0	13
473	SOS3 Function in Plant Salt Tolerance Requires N-Myristoylation and Calcium Binding. Plant Cell, 2000, 12, 1667.	3.1	12
474	Structural mechanisms of RNA recognition: sequence-specific and non-specific RNA-binding proteins and the Cas9-RNA-DNA complex. Cellular and Molecular Life Sciences, 2015, 72, 1045-1058.	2.4	12
475	The Arabidopsis LOS5/ABA3 Locus Encodes a Molybdenum Cofactor Sulfurase and Modulates Cold Stress- and Osmotic Stress-Responsive Gene Expression. Plant Cell, 2001, 13, 2063.	3.1	11
476	EXPORTIN 1A prevents transgene silencing in <i>Arabidopsis</i> by modulating nucleo ytoplasmic partitioning of HDA6. Journal of Integrative Plant Biology, 2019, 61, 1243-1254.	4.1	11
477	Cystic pancreatic neuroendocrine tumors: A distinctive subgroup with indolent biological behavior? A systematic review and meta-analysis. Pancreatology, 2019, 19, 738-750.	0.5	11
478	Rice Protein Tagging Project: A Call for International Collaborations on Genome-wide In-Locus Tagging of Rice Proteins. Molecular Plant, 2020, 13, 1663-1665.	3.9	11
479	The CCR4â€NOT complex component NOT1 regulates RNAâ€directed DNA methylation and transcriptional silencing by facilitating Pol IVâ€dependent siRNA production. Plant Journal, 2020, 103, 1503-1515.	2.8	10
480	Assessing Kinase Activity in Plants with In-Gel Kinase Assays. Methods in Molecular Biology, 2016, 1363, 189-197.	0.4	10
481	Fluorometric determination of carbohydrate with 2-aminothiophenol. Analytical Biochemistry, 1991, 195, 101-104.	1.1	9
482	Multiple transcripts of a calcium-binding protein gene from Atriplex nummularia are differentially regulated by developmental and environmental stimuli. Physiologia Plantarum, 1996, 97, 499-506.	2.6	9
483	AtSEC22 Regulates Cell Morphogenesis via Affecting Cytoskeleton Organization and Stabilities. Frontiers in Plant Science, 2021, 12, 635732.	1.7	9
484	Using Arabidopsis-Related Model Species (ARMS): Growth, Genetic Transformation, and Comparative Genomics. Methods in Molecular Biology, 2014, 1062, 27-51.	0.4	8
485	Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets. Scientific Reports, 2015, 5, 17832.	1.6	8
486	Stalk cell polar ion transport provide for bladderâ€based salinity tolerance in <i>Chenopodium quinoa</i> . New Phytologist, 2022, 235, 1822-1835.	3.5	8

#	Article	IF	CITATIONS
487	SOS3 (salt overly sensitive 3) fromArabidopsis thaliana: expression, purification, crystallization and preliminary X-ray analysis. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1272-1274.	2.5	7
488	Largeâ€scale identification of expression quantitative trait loci in Arabidopsis reveals novel candidate regulators of immune responses and other processes. Journal of Integrative Plant Biology, 2020, 62, 1469-1484.	4.1	7
489	Comparative physiological and transcriptomic analysis reveals salinity tolerance mechanisms in Sorghum bicolor (L.) Moench. Planta, 2021, 254, 98.	1.6	7
490	Non-CG DNA methylation-deficiency mutations enhance mutagenesis rates during salt adaptation in cultured Arabidopsis cells. Stress Biology, 2021, 1, 1.	1,5	7
491	Acetylproteomics analyses reveal critical features of lysine-Îμ-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response. Stress Biology, 2022, 2, .	1.5	7
492	The future of gene-edited crops in China. National Science Review, 2022, 9, nwac063.	4.6	7
493	Double Repression in Jasmonate-Mediated Plant Defense. Molecular Cell, 2013, 50, 459-460.	4.5	6
494	New discoveries generate new questions about RNA-directed DNA methylation in Arabidopsis. National Science Review, 2017, 4, 10-15.	4.6	6
495	Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 1127-1135.	1.2	6
496	Experimental reconstruction of doubleâ€stranded break repairâ€mediated plastid <scp>DNA</scp> insertion into the tobacco nucleus. Plant Journal, 2018, 93, 227-234.	2.8	6
497	Gene Targeting Facilitated by Engineered Sequence-Specific Nucleases: Potential Applications for Crop Improvement. Plant and Cell Physiology, 2021, 62, 752-765.	1.5	6
498	SWO1 modulates cell wall integrity under salt stress by interacting with importin É' in Arabidopsis. Stress Biology, 2021, 1, 1.	1,5	6
499	Phenotypic Analysis of Arabidopsis Mutants: Germination Rate under Salt/Hormone-Induced Stress. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot4969-pdb.prot4969.	0.2	5
500	Non-coding RNAs as potent tools for crop improvement. National Science Review, 2014, 1, 186-189.	4.6	5
501	A model for the aberrant DNA methylomes in aging cells and cancer cells. Biochemical Society Transactions, 2019, 47, 997-1003.	1.6	5
502	MSI4/FVE is required for accumulation of 24â€nt siRNAs and DNA methylation at a subset of target regions of RNAâ€directed DNA methylation. Plant Journal, 2021, 108, 347-357.	2.8	5
503	Genetic analysis implicates a molecular chaperone complex in regulating epigenetic silencing of methylated genomic regions. Journal of Integrative Plant Biology, 2021, 63, 1451-1461.	4.1	5
504	The power and versatility of genome editing tools in crop improvement. Journal of Integrative Plant Biology, 2021, 63, 1591-1594.	4.1	5

#	Article	IF	CITATIONS
505	Genome-Wide Analysis of CqCrRLK1L and CqRALF Gene Families in Chenopodium quinoa and Their Roles in Salt Stress Response. Frontiers in Plant Science, 0, 13, .	1.7	5
506	Recognition of a PP2C Interaction Motif in Several Plant Protein Kinases. , 2007, 365, 287-298.		4
507	Phenotypic Analysis of <i>Arabidopsis</i> Mutants: Root Elongation under Salt/Hormone-Induced Stress. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot4968.	0.2	4
508	RNAâ€directed DNA methylation has an important developmental function in Arabidopsis that is masked by the chromatin remodeler PICKLE. Journal of Integrative Plant Biology, 2020, 62, 1647-1652.	4.1	4
509	Plant genome engineering from lab to field—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 35-54.	1.8	4
510	The Arabidopsis spliceosomal protein SmEb modulates ABA responses by maintaining proper alternative splicing of HAB1. Stress Biology, 2021, 1, 1.	1.5	4
511	Expanding the target range of base editing in plants without loss of efficiency by blocking RNAâ€silencing. Plant Biotechnology Journal, 2021, 19, 2389-2391.	4.1	4
512	Plant latent defense response to microbial non-pathogenic factors antagonizes compatibility. National Science Review, 2022, 9, .	4.6	4
513	Integration of Abiotic Stress Signaling Pathways. , 0, , 215-247.		3
514	High-Throughput Phosphorylation Screening and Validation through Ti(IV)-Nanopolymer Functionalized Reverse Phase Phosphoprotein Array. Analytical Chemistry, 2018, 90, 10263-10270.	3.2	3
515	General Control Non-derepressible 1 (AtGCN1) Is Important for Flowering Time, Plant Growth, Seed Development, and the Transcription/Translation of Specific Genes in Arabidopsis. Frontiers in Plant Science, 2021, 12, 630311.	1.7	3
516	Molecular Genetics of Plant Responses to Low Temperatures. , 2002, , 3-16.		3
517	Multiple transcripts of a calcium-binding protein gene from Atriplex nummularia are differentially regulated by developmental and environmental stimuli. Physiologia Plantarum, 1996, 97, 499-506.	2.6	3
518	A novel mitochondrial protein is required for cell wall integrity, auxin accumulation and root elongation in Arabidopsis under salt stress. Stress Biology, 2022, 2, 1.	1.5	3
519	Abscisic Acid (ABA). , 2004, , 6-11.		2
520	The Molecular Networks of Abiotic Stress Signaling. , 0, , 388-416.		2
521	A PROBABILISTIC METHOD FOR SMALL RNA FLOWGRAM MATCHING. , 2007, , .		2
522	Chapter 3 Determination of Protein Isoprenylation in Vitro and in Vivo. Methods in Cell Biology, 1995, 50, 31-39.	0.5	1

#	Article	IF	CITATIONS
523	Mechanisms Underlying Plant Tolerance to Abiotic Stresses. , 2006, , 360-385.		1
524	Measuring Spatial and Temporal Ca ²⁺ Signals in Arabidopsis Plants. Journal of Visualized Experiments, 2014, , e51945.	0.2	1
525	Computational Analysis of Genome-Wide ARGONAUTE-Dependent DNA Methylation in Plants. Methods in Molecular Biology, 2017, 1640, 219-225.	0.4	1
526	Dissecting the Subnuclear Localization Patterns of Argonaute Proteins and Other Components of the RNA-Directed DNA Methylation Pathway in Plants. Methods in Molecular Biology, 2017, 1640, 129-135.	0.4	1
527	SUMO E3 ligase SIZ1 negatively regulates arsenite resistance via depressing GSH biosynthesis in Arabidopsis. Stress Biology, 2022, 2, 1.	1.5	1
528	Epigenetic Regulation: Chromatin Modeling and Small RNAs. , 2009, , 217-241.		0
529	Positional Cloning of A Plant Salt Tolerance Gene. , 2000, , 235-253.		Ο
530	MAG2 and MAL Regulate Vesicle Trafficking and Auxin Homeostasis With Functional Redundancy. Frontiers in Plant Science, 2022, 13, 849532.	1.7	0