Farahnaz Haftlang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6446426/publications.pdf

Version: 2024-02-01

26 papers

385 citations

758635 12 h-index 19 g-index

26 all docs

26 docs citations

times ranked

26

220 citing authors

#	Article	IF	CITATIONS
1	A perspective on precipitation-hardening high-entropy alloys fabricated by additive manufacturing. Materials and Design, 2021, 211, 110161.	3.3	67
2	Comparative tribological studies of duplex surface treated AISI 1045 steels fabricated by combinations of plasma nitriding and aluminizing. Materials & Design, 2014, 60, 580-586.	5.1	35
3	Simultaneous effects of deformation-induced plasticity and precipitation hardening in metastable non-equiatomic FeNiCoMnTiSi ferrous medium-entropy alloy at room and liquid nitrogen temperatures. Scripta Materialia, 2021, 202, 114013.	2.6	28
4	Improving electrochemical properties of AISI 1045 steels by duplex surface treatment of plasma nitriding and aluminizing. Applied Surface Science, 2015, 329, 240-247.	3.1	26
5	Evaluation of niobium carbide coatings produced on AISI L2 steel via thermo-reactive diffusion technique. Vacuum, 2017, 146, 44-51.	1.6	24
6	Duplex treatment of AISI 1045 steel by plasma nitriding and aluminizing. Vacuum, 2014, 107, 155-158.	1.6	20
7	Duplex Surface Treatment of AISI 1045 Steel Via Pack Boriding and Plasma Nitriding: Characterization and Tribological Studies. Journal of Tribology, 2018, 140, .	1.0	18
8	The subsurface deformed region and superficial protective tribo-oxide layer during wear in a non-equiatomic CoCrFeNiV high entropy alloy. Materials and Design, 2022, 218, 110685.	3.3	17
9	The wear induced crystallographic texture transition in Ti-29Nb-14Ta-4.5Zr alloy. Applied Surface Science, 2019, 491, 360-373.	3.1	16
10	The subsurface frictional hardening: A new approach to improve the high-speed wear performance of Ti-29Nb-14Ta-4.5Zr alloy against Ti-6Al-4V extra-low interstitial. Wear, 2019, 422-423, 137-150.	1.5	16
11	Room-temperature micro and macro mechanical properties of the metastable Ti–29Nb–14Ta–4.5Zr alloy holding nano-sized precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138583.	2.6	16
12	Effects of processing parameters and heat treatment on the microstructure and magnetic properties of the in-situ synthesized Fe-Ni permalloy produced using direct energy deposition. Journal of Alloys and Compounds, 2022, 907, 164415.	2.8	15
13	Outstanding Mild Wear Performance of Ti–29Nb–14Ta–4.5Zr Alloy Through Subsurface Grain Refinement and Supporting Effect of Transformation Induced Plasticity. Metals and Materials International, 2020, 26, 467-476.	1.8	13
14	Superior phase transformation-assisted mechanical properties of a metastable medium-entropy ferrous alloy with heterogeneous microstructure. Materials Letters, 2021, 302, 130391.	1.3	13
15	The effect of nano-size second precipitates on the structure, apatite-inducing ability and in-vitro biocompatibility of Ti-29Nb-14Ta-4.5Zr alloy. Materials Science and Engineering C, 2020, 109, 110561.	3.8	12
16	In-situ frictional grain refinement of Ti–29Nb–14Ta–4.5Zr bio-alloy during high-speed sliding wear. Materials Letters, 2020, 261, 127083.	1.3	11
17	Tribological characterization of TiN coating fabricated by duplex surface treatment of pack-titanizing and plasma-nitriding. Materials Research Express, 2019, 6, 096444.	0.8	6
18	Mechanical and magnetic properties of soft magnetic Fe–Ni permalloy produced by directed energy deposition processes. Journal of Materials Science, 2022, 57, 17967-17983.	1.7	6

#	Article	IF	CITATIONS
19	Tribological Performance and Electrochemical Behavior of Tiâ€29Nbâ€14Taâ€4.5Zr Alloy in Simulated Physiological Solution. Advanced Engineering Materials, 2020, 22, 1900758.	1.6	5
20	Characterization and tribological performance of TiB2/TiB composite coatings fabricated by duplex surface treatment. Materials Letters, 2020, 281, 128626.	1.3	5
21	Excellent combination of cryogenic strength and ductility of a metastable Fe65Ni15Co8Mn8Ti3Si medium entropy alloy through the exceptional deformation-induced martensitic transformation. Journal of Materials Science, 2022, 57, 18062-18074.	1.7	5
22	Influence of Treatment Sequence on Tribological Performance of Duplex Surface-Treated AISI 1045 Steel. Acta Metallurgica Sinica (English Letters), 2019, 32, 1227-1236.	1.5	4
23	Microstructural evolution and corrosion behavior of Sanicro 28 during thermomechanical processing. Materials Today Communications, 2020, 24, 101228.	0.9	4
24	The effect of nano-size second phases on the tribological performance of TNTZ alloy. Materials Research Express, 2019, 6, 095031.	0.8	1
25	<i>In vitro</i> comparative investigation of bioactivity and biocompatibility behavior of titanium nano-composites fabricated by friction stir processing. Materials Research Express, 2019, 6, 125425.	0.8	1
26	The influence of laser powder-bed fusion microstructures on the corrosion behavior of CuSn alloy. Journal of Materials Science, 0 , 1 .	1.7	1