
Ewa Widy-Tyszkiewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6446353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Early exposure to paracetamol reduces level of testicular testosterone and changes gonadal expression of genes relevant for steroidogenesis in rats offspring. Drug and Chemical Toxicology, 2022, 45, 1862-1869.	1.2	2
2	Current Evidence for Disease Prevention and Treatment by Protocatechuic Acid (PCA) and Its Precursor Protocatechuic Aldehyde (PCAL) in Animals and Humans. Reference Series in Phytochemistry, 2022, , 507-543.	0.2	0
3	Aspalathus linearis infusion affects hole-board test behaviour and amino acid concentration in the brain. Neuroscience Letters, 2021, 747, 135680.	1.0	5
4	Dihydroergotamine affects spatial behavior and neurotransmission in the central nervous system of Wistar rats. Annals of Agricultural and Environmental Medicine, 2021, 28, 437-445.	0.5	2
5	Effect of protocatechuic acid on cognitive processes and central nervous system neuromodulators in the hippocampus, prefrontal cortex, and striatum of healthy rats. Nutritional Neuroscience, 2020, , 1-12.	1.5	5
6	Hypothalamus – Response to early paracetamol exposure in male rats offspring. International Journal of Developmental Neuroscience, 2019, 76, 1-5.	0.7	6
7	Long-term administration of Aspalathus linearis infusion affects spatial memory of adult Sprague-Dawley male rats as well as increases their striatal dopamine content. Journal of Ethnopharmacology, 2019, 238, 111881.	2.0	13
8	Administration of protocatechuic acid affects memory and restores hippocampal and cortical serotonin turnover in rat model of oral D-galactose-induced memory impairment. Behavioural Brain Research, 2019, 368, 111896.	1.2	29
9	Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of <i>in vitro</i> and <i>in vivo</i> studies in rodents and humans. Nutritional Neuroscience, 2019, 22, 72-82.	1.5	88
10	Long-term administration of Greek Royal Jelly decreases GABA concentration in the striatum and hypothalamus of naturally aged Wistar male rats. Neuroscience Letters, 2018, 675, 17-22.	1.0	15
11	Early paracetamol exposure decreases brain-derived neurotrophic factor (BDNF) in striatum and affects social behaviour and exploration in rats. Pharmacology Biochemistry and Behavior, 2018, 168, 25-32.	1.3	26
12	Paracetamol â^ Effect of early exposure on neurotransmission, spatial memory and motor performance in rats. Behavioural Brain Research, 2017, 323, 162-171.	1.2	27
13	Determination of mechanical properties of rat's artery using optimization based method and Ogden's model. Materials Today: Proceedings, 2017, 4, 5849-5854.	0.9	1
14	<i>Passiflora incarnata</i> L. Improves Spatial Memory, Reduces Stress, and Affects Neurotransmission in Rats. Phytotherapy Research, 2016, 30, 781-789.	2.8	24
15	Cerebellar level of neurotransmitters in rats exposed to paracetamol during development. Pharmacological Reports, 2016, 68, 1159-1164.	1.5	17
16	Influence of Long-Term Zinc Administration on Spatial Learning and Exploratory Activity in Rats. Biological Trace Element Research, 2016, 172, 408-418.	1.9	13
17	Determination of Mechanical Properties of Rat Aorta Using Ring-Shaped Specimen. Solid State Phenomena, 2015, 240, 255-260.	0.3	2
18	Determination of the Juglone Content of <i>Juglans regia</i> Leaves by GC/MS. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	4

#	Article	IF	CITATIONS
19	Developmental exposure to paracetamol causes biochemical alterations in medulla oblongata. Environmental Toxicology and Pharmacology, 2015, 40, 369-374.	2.0	26
20	Effect of prenatal and early life paracetamol exposure on the level of neurotransmitters in rats—Focus on the spinal cord. International Journal of Developmental Neuroscience, 2015, 47, 133-139.	0.7	20
21	Administration of Greek Royal Jelly produces fast response in neurotransmission of aged Wistar male rats. Journal of Pre-Clinical and Clinical Research, 2015, 9, 151-157.	0.2	5
22	Paracetamol impairs the profile of amino acids in the rat brain. Environmental Toxicology and Pharmacology, 2014, 37, 95-102.	2.0	18
23	Long-term administration of Greek Royal Jelly improves spatial memory and influences the concentration of brain neurotransmitters in naturally aged Wistar male rats. Journal of Ethnopharmacology, 2014, 155, 343-351.	2.0	28
24	Neurodegeneration and inflammation in hippocampus in experimental autoimmune encephalomyelitis induced in rats by one – Time administration of encephalitogenic T cells. Neuroscience, 2013, 248, 690-698.	1.1	15
25	Paracetamol—The outcome on neurotransmission and spatial learning in rats. Behavioural Brain Research, 2013, 253, 157-164.	1.2	21
26	Influence of long-term administration of rutin on spatial memory as well as the concentration of brain neurotransmitters in aged rats. Pharmacological Reports, 2012, 64, 808-816.	1.5	31
27	Effect of intranasal manganese administration on neurotransmission and spatial learning in rats. Toxicology and Applied Pharmacology, 2012, 265, 1-9.	1.3	37
28	Neonatal serotonin (5-HT) depletion does not affect spatial learning and memory in rats. Pharmacological Reports, 2012, 64, 266-274.	1.5	12
29	Maternal Zinc Supplementation Improves Spatial Memory in Rat Pups. Biological Trace Element Research, 2012, 147, 299-308.	1.9	30
30	The influence of the long-term administration of Curcuma longa extract on learning and spatial memory as well as the concentration of brain neurotransmitters and level of plasma corticosterone in aged rats. Pharmacology Biochemistry and Behavior, 2010, 95, 351-358.	1.3	21
31	New hippocampal neurons are not obligatory for memory formation; cyclin D2 knockout mice with no adult brain neurogenesis show learning. Learning and Memory, 2009, 16, 439-451.	0.5	112
32	Long Term Administration of Hypericum perforatum Improves Spatial Learning and Memory in the Water Maze Biological and Pharmaceutical Bulletin, 2002, 25, 1289-1294.	0.6	31
33	Tellurium-induced cognitive deficits in rats are related to neuropathological changes in the central nervous system. Toxicology Letters, 2002, 131, 203-214.	0.4	41
34	3H-Naloxone Binding in Brain Regions of Normotensive Wistar, Spontaneously Hypertensive and Renal Hypertensive Rats. Blood Pressure, 1994, 3, 202-205.	0.7	0
35	Memory Impairment with Pretreatment but Not with Posttreatment of Quaternary Naloxone. Basic and Clinical Pharmacology and Toxicology, 1994, 74, 361-364.	0.0	1
36	Enhanced disruptive spatial learning effect after sufentanil in renal hypertensive rats versus normotensive rats. Physiology and Behavior, 1993, 53, 467-475.	1.0	3

EWA WIDY-TYSZKIEWICZ

#	Article	IF	CITATIONS
37	Spatial navigation learning in spontaneously hypertensive, renal hypertensive and normotensive Wistar rats. Behavioural Brain Research, 1993, 54, 179-185.	1.2	34
38	Propranolol impairs retention, but not acquisition, of the water maze in renal hypertensive rats (RHR). Pharmacological Research, 1992, 25, 93-94.	3.1	1
39	Analgesic activity of morphinceptin, β-casomorphin-4, and deltakephalin in normotensive Wistar-Glaxo and spontaneously hypertensive rats. Peptides, 1989, 10, 539-544.	1.2	9
40	Effect of cold, restraint, reserpine, and splanchnicotomy on the ornithine decarboxylase activity of rat adrenal medulla and cortex. Experimental Neurology, 1981, 73, 632-641.	2.0	19
41	n-Pentylamine: Effect on motor activity of mice. Pharmacology Biochemistry and Behavior, 1980, 13, 385-390.	1.3	0
42	Effect of Oxotremorine on Ornithine Decarboxylase Activity of the Adrenal Gland in Rat. Journal of Neurochemistry, 1980, 35, 193-201.	2.1	16
43	Electroencephalographic analysis of the central action of dihydroxyphenylalanine. Electroencephalography and Clinical Neurophysiology, 1970, 28, 259-265.	0.3	16
44	The influence of various pharmacological agents on the desynchronization produced by DOPA in the cerveau isolé preparation. Electroencephalography and Clinical Neurophysiology, 1970, 28, 266-272.	0.3	8