
Renfang Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6446288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pan-Cancer Analysis Reveals Disrupted Circadian Clock Associates With T Cell Exhaustion. Frontiers in Immunology, 2019, 10, 2451.	4.8	69
2	Regnase-1, a rapid response ribonuclease regulating inflammation and stress responses. Cellular and Molecular Immunology, 2017, 14, 412-422.	10.5	49
3	A Tumor-Specific Super-Enhancer Drives Immune Evasion by Guiding Synchronous Expression of PD-L1 and PD-L2. Cell Reports, 2019, 29, 3435-3447.e4.	6.4	33
4	The generation of PD-L1 and PD-L2 in cancer cells: From nuclear chromatin reorganization to extracellular presentation. Acta Pharmaceutica Sinica B, 2022, 12, 1041-1053.	12.0	27
5	Enhancer RNAs: a missing regulatory layer in gene transcription. Science China Life Sciences, 2019, 62, 905-912.	4.9	23
6	Comprehensive transcriptome profiling in elderly cancer patients reveals agingâ€altered immune cells and immune checkpoints. International Journal of Cancer, 2019, 144, 1657-1663.	5.1	21
7	A super-enhancer controls TGF- β signaling in pancreatic cancer through downregulation of TGFBR2. Cellular Signalling, 2020, 66, 109470.	3.6	19
8	Orchestrating a biomarker panel with IncRNAs and mRNAs for predicting survival in pancreatic ductal adenocarcinoma. Journal of Cellular Biochemistry, 2018, 119, 7696-7706.	2.6	17
9	Targeting liquid-liquid phase separation in pancreatic cancer. Translational Cancer Research, 2019, 8, 96-103.	1.0	15
10	HPV shapes tumor transcriptome by globally modifying the pool of RNA binding protein-binding motif. Aging, 2019, 11, 2430-2446.	3.1	14
11	Ubiquitin-specific protease 7 is a druggable target that is essential for pancreatic cancer growth and chemoresistance. Investigational New Drugs, 2020, 38, 1707-1716.	2.6	13
12	Multiâ€omics analysis reveals the functional transcription and potential translation of enhancers. International Journal of Cancer, 2020, 147, 2210-2224.	5.1	11
13	The endoribonuclease N4BP1 prevents psoriasis by controlling both keratinocytes proliferation and neutrophil infiltration. Cell Death and Disease, 2021, 12, 488.	6.3	11
14	The C-terminal low-complexity domain involved in liquid–liquid phase separation is required for BRD4 function in vivo. Journal of Molecular Cell Biology, 2019, 11, 807-809.	3.3	8
15	Super-enhancer receives signals from the extracellular matrix to induce PD-L1-mediated immune evasion <i>via</i> integrin/ BRAF/TAK1/ERK/ETV4 signaling. Cancer Biology and Medicine, 2021, 18, 0-0.	3.0	8
16	A super-enhancer maintains homeostatic expression of Regnase-1. Gene, 2018, 669, 35-41.	2.2	5
17	SPACE: a web server for linking chromatin accessibility with clinical phenotypes and the immune microenvironment in pan-cancer analysis. Cellular and Molecular Immunology, 2020, 17, 1294-1296.	10.5	3
18	Hypoxia-induced RNASEH2A limits activation of cGAS-STING signaling in HCC and predicts poor prognosis. Tumori, 2022, 108, 63-76.	1.1	3

Renfang Mao

#	Article	IF	CITATIONS
19	<scp>TAK1</scp> is a druggable kinase for diffuse large Bâ€cell lymphoma. Cell Biochemistry and Function, 2019, 37, 153-160.	2.9	2
20	USP7 sustains an active epigenetic program via stabilizing MLL2 and WDR5 in diffuse large Bâ€cell lymphoma. Cell Biochemistry and Function, 2022, 40, 379-390.	2.9	1
21	Inhibition of BETs prevents heat shock-induced cell death via upregulating HSPs in SV40 large T antigen transfected cells. Genes and Genomics, 2022, , 1.	1.4	0
22	Comprehensively characterizing cellular changes and the expression of THSD7A and PLA2R1 under multiple in vitro models of podocyte injury. Cell Biochemistry and Function, 0, , .	2.9	0