
Jamal Jokar Arsanjani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/644596/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 2013, 21, 265-275.	1.4	528
2	Fine-resolution population mapping using OpenStreetMap points-of-interest. International Journal of Geographical Information Science, 2014, 28, 1940-1963.	2.2	184
3	Spatiotemporal simulation of urban growth patterns using agent-based modeling: The case of Tehran. Cities, 2013, 32, 33-42.	2.7	165
4	Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran. International Journal of Image and Data Fusion, 2011, 2, 329-345.	0.8	132
5	Toward mapping land-use patterns from volunteered geographic information. International Journal of Geographical Information Science, 2013, 27, 2264-2278.	2.2	117
6	GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries. Habitat International, 2016, 55, 25-31.	2.3	86
7	An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises. International Journal of Applied Earth Observation and Geoinformation, 2015, 35, 329-337.	1.4	69
8	A geographical direction-based approach for capturing the local variation of urban expansion in the application of CA-Markov model. Cities, 2019, 93, 120-135.	2.7	69
9	Investigating the Feasibility of Geo-Tagged Photographs as Sources of Land Cover Input Data. ISPRS International Journal of Geo-Information, 2016, 5, 64.	1.4	58
10	Quality Assessment of the Contributed Land Use Information from OpenStreetMap Versus Authoritative Datasets. Lecture Notes in Geoinformation and Cartography, 2015, , 37-58.	0.5	57
11	Data Quality in Citizen Science. , 2021, , 139-157.		56
12	Predicting Urban Growth of the Greater Toronto Area - Coupling a Markov Cellular Automata with Document Meta-Analysis. Journal of Environmental Informatics, 2015, 25, 71-80.	6.0	51
13	Post-Disaster Building Database Updating Using Automated Deep Learning: An Integration of Pre-Disaster OpenStreetMap and Multi-Temporal Satellite Data. Remote Sensing, 2019, 11, 2427.	1.8	48
14	Insights on the historical and emerging global land cover changes: The case of ESA-CCI-LC datasets. Applied Geography, 2019, 106, 82-92.	1.7	47
15	Assessing the suitability of GlobeLand30 for mapping land cover in Germany. International Journal of Digital Earth, 2016, 9, 873-891.	1.6	45
16	Modeling thermal comfort in different condition of mind using satellite images: An Ordered Weighted Averaging approach and a case study. Ecological Indicators, 2019, 104, 1-12.	2.6	45
17	A historical and future impact assessment of mining activities on surface biophysical characteristics change: A remote sensing-based approach. Ecological Indicators, 2021, 122, 107264.	2.6	45
18	Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis. Cartography and Geographic Information Science, 2015, 42, 134-148.	1.4	43

JAMAL JOKAR ARSANJANI

#	Article	IF	CITATIONS
19	The emergence and evolution of OpenStreetMap: a cellular automata approach. International Journal of Digital Earth, 2015, 8, 76-90.	1.6	43
20	Spatial data for slum upgrading: Volunteered Geographic Information and the role of citizen science. Habitat International, 2018, 72, 18-26.	2.3	43
21	A novel method to quantify urban surface ecological poorness zone: A case study of several European cities. Science of the Total Environment, 2021, 757, 143755.	3.9	39
22	An Introduction to OpenStreetMap in Geographic Information Science: Experiences, Research, and Applications. Lecture Notes in Geoinformation and Cartography, 2015, , 1-15.	0.5	39
23	Modeling outdoor thermal comfort using satellite imagery: A principle component analysis-based approach. Ecological Indicators, 2020, 117, 106555.	2.6	38
24	Exploratory Analysis of Driving Force of Wildfires in Australia: An Application of Machine Learning within Google Earth Engine. Remote Sensing, 2021, 13, 10.	1.8	38
25	An Exploration of Future Patterns of the Contributions to OpenStreetMap and Development of a Contribution Index. Transactions in GIS, 2015, 19, 896-914.	1.0	37
26	Modelling surface heat island intensity according to differences of biophysical characteristics: A case study of Amol city, Iran. Ecological Indicators, 2020, 109, 105816.	2.6	33
27	Spatiotemporal monitoring of Bakhtegan Lake's areal fluctuations and an exploration of its future status by applying a cellular automata model. Computers and Geosciences, 2015, 78, 37-43.	2.0	32
28	Crowdsourced mapping of land use in urban dense environments: An assessment of Toronto. Canadian Geographer / Geographie Canadien, 2015, 59, 246-255.	1.0	31
29	Modeling the impact of the COVID-19 lockdowns on urban surface ecological status: A case study of Milan and Wuhan cities. Journal of Environmental Management, 2021, 286, 112236.	3.8	30
30	Joint use of remote sensing data and volunteered geographic information for exposure estimation: evidence from ValparaÃso, Chile. Natural Hazards, 2017, 86, 81-105.	1.6	28
31	Understanding the potential relationship between the socio-economic variables and contributions to OpenStreetMap. International Journal of Digital Earth, 2015, 8, 861-876.	1.6	27
32	Modelling the intensity of surface urban heat island and predicting the emerging patterns: Landsat multi-temporal images and Tehran as case study. International Journal of Remote Sensing, 2020, 41, 7400-7426.	1.3	27
33	Employing Machine Learning for Detection of Invasive Species using Sentinel-2 and AVIRIS Data: The Case of Kudzu in the United States. Sustainability, 2020, 12, 3544.	1.6	26
34	A New Integrated Approach for Municipal Landfill Siting Based on Urban Physical Growth Prediction: A Case Study Mashhad Metropolis in Iran. Remote Sensing, 2021, 13, 949.	1.8	26
35	Urban change in Goa, India. Habitat International, 2017, 68, 24-29.	2.3	25
36	Characterizing, monitoring, and simulating land cover dynamics using GlobeLand30: A case study from 2000 to 2030. Journal of Environmental Management, 2018, 214, 66-75.	3.8	25

JAMAL JOKAR ARSANJANI

#	Article	IF	CITATIONS
37	A Morphological Approach to Predicting Urban Expansion. Transactions in GIS, 2014, 18, 219-233.	1.0	24
38	Development of a cellular automata model using open source technologies for monitoring urbanisation in the global south: The case of Maputo, Mozambique. Habitat International, 2018, 71, 38-48.	2.3	22
39	FSAUA: A framework for sensitivity analysis and uncertainty assessment in historical and forecasted land use maps. Environmental Modelling and Software, 2016, 84, 70-84.	1.9	21
40	Improving the Quality of Citizen Contributed Geodata through Their Historical Contributions: The Case of the Road Network in OpenStreetMap. ISPRS International Journal of Geo-Information, 2018, 7, 253.	1.4	21
41	Integrating and Generalising Volunteered Geographic Information. Lecture Notes in Geoinformation and Cartography, 2014, , 119-155.	0.5	21
42	Deep Learning for Detecting and Classifying Ocean Objects: Application of YoloV3 for Iceberg–Ship Discrimination. ISPRS International Journal of Geo-Information, 2020, 9, 758.	1.4	19
43	Stimulating Implementation of Sustainable Development Goals and Conservation Action: Predicting Future Land Use/Cover Change in Virunga National Park, Congo. Sustainability, 2020, 12, 1570.	1.6	19
44	Semantic Interoperability of Sensor Data with Volunteered Geographic Information: A Unified Model. ISPRS International Journal of Geo-Information, 2013, 2, 766-796.	1.4	18
45	Placing Wikimapia: an exploratory analysis. International Journal of Geographical Information Science, 2019, 33, 1633-1650.	2.2	18
46	A risk-based approach for determining the future potential of commercial shipping in the Arctic. Journal of Marine Engineering and Technology, 2022, 21, 82-99.	1.9	17
47	The Geography of the Covid-19 Pandemic: A Data-Driven Approach to Exploring Geographical Driving Forces. International Journal of Environmental Research and Public Health, 2021, 18, 2803.	1.2	15
48	EXPLOITING VOLUNTEERED GEOGRAPHIC INFORMATION TO EASE LAND USE MAPPING OF AN URBAN LANDSCAPE. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-4/W1, 51-55.	0.2	15
49	Analyzing crop change scenario with the SmartScapeâ"¢ spatial decision support system. Land Use Policy, 2016, 51, 41-53.	2.5	14
50	Dynamic land use/cover change modelling. , 2012, , .		13
51	Characterizing and monitoring global landscapes using GlobeLand30 datasets: the first decade of the twenty-first century. International Journal of Digital Earth, 2019, 12, 642-660.	1.6	11
52	Machine Learning for Conservation Planning in a Changing Climate. Sustainability, 2020, 12, 7657.	1.6	11
53	A Spatial Decision Support Approach for Flood Vulnerability Analysis in Urban Areas: A Case Study of Tehran. ISPRS International Journal of Geo-Information, 2022, 11, 380.	1.4	11
54	Does Land Use and Landscape Contribute to Self-Harm? A Sustainability Cities Framework. Data, 2020, 5, 9.	1.2	10

JAMAL JOKAR ARSANJANI

#	Article	IF	CITATIONS
55	Technical Guidelines to Extract and Analyze VGI from Different Platforms. Data, 2016, 1, 15.	1.2	8
56	Spatial Analysis of Curb-Park Violations and Their Relationship with Points of Interest: A Case Study of Tehran, Iran. Sustainability, 2019, 11, 6336.	1.6	8
57	Prediction of Groundwater Level Variations in a Changing Climate: A Danish Case Study. ISPRS International Journal of Geo-Information, 2021, 10, 792.	1.4	8
58	Landslide Susceptibility Mapping Using Machine Learning: A Danish Case Study. ISPRS International Journal of Geo-Information, 2022, 11, 324.	1.4	7
59	An Assessment of Social Resilience against Natural Hazards through Multi-Criteria Decision Making in Geographical Setting: A Case Study of Sarpol-e Zahab, Iran. Sustainability, 2022, 14, 8304.	1.6	7
60	Group-based crop change planning: Application of SmartScapeâ,,¢ spatial decision support system for resolving conflicts. Ecological Modelling, 2016, 333, 92-100.	1.2	6
61	Visualization of geologic geospatial datasets through X3D in the frame of WebGIS. International Journal of Digital Earth, 2013, 6, 483-503.	1.6	4
62	Geodata-driven approaches to financial inclusion – Addressing the challenge of proximity. International Journal of Applied Earth Observation and Geoinformation, 2021, 99, 102325.	1.4	4
63	A multi-sensor approach for characterising human-made structures by estimating area, volume and population based on sentinel data and deep learning. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102628.	1.4	4
64	Special Issue Editorial: Earth Observation and Geoinformation Technologies for Sustainable Development. Sustainability, 2017, 9, 760.	1.6	3
65	Remote Sensing, Crowd Sensing, and Geospatial Technologies for Public Health: An Editorial. International Journal of Environmental Research and Public Health, 2017, 14, 405.	1.2	3
66	A deep learning method for creating globally applicable population estimates from sentinel data. Transactions in GIS, 2022, 26, 3147-3175.	1.0	3
67	Monitoring and Spatially Explicit Simulation of Land Use Dynamics: From Cellular Automata to Geosimulation - A Case Study of Tehran, Iran. , 2011, , .		1
68	Exploring the Potential Socio-economic and Physical Factors Causing Historical Wildfires in the Western USA. , 2020, , 95-120.		1
69	Implementation of Traditional Techniques. , 2012, , 69-94.		0
70	Journal Data: A New Platform for Data Research. Data, 2016, 1, 9-10.	1.2	0
71	Impact Assessment Analysis of Sea Level Rise in Denmark: A Case Study of Falster Island, Guldborgsund. Sustainability, 2021, 13, 7503.	1.6	0
72	Driving Forces of Non-Violent Crime in Houston, TX: A Spatially Filtered Negative Binomial Model. , 0, ,		0

5

#	Article	IF	CITATIONS
73	Computational Approaches for Urban Environments: An Editorial. , 2015, , 1-9.		0
74	On the Contribution of Volunteered Geographic Information to Land Monitoring Efforts. , 2016, , 269-284.		0
75	Perspectives on "Earth Observation and GIScience for Agricultural Applications†ISPRS International Journal of Geo-Information, 2022, 11, 372.	1.4	0