
Christine M Szymanski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6445832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial Glycoprotein Biosynthesis. , 2022, , .		Ο
2	Human Intelectin-1 Promotes Cellular Attachment and Neutrophil Killing of Streptococcus pneumoniae in a Serotype-Dependent Manner. Infection and Immunity, 2022, 90, e0068221.	2.2	6
3	Significance of fucose in intestinal health and disease. Molecular Microbiology, 2021, 115, 1086-1093.	2.5	28
4	Microbial transformation of the host glycobiome. Glycobiology, 2021, 31, 664-666.	2.5	1
5	RNA and Sugars, Unique Properties of Bacteriophages Infecting Multidrug Resistant Acinetobacter radioresistens Strain LH6. Viruses, 2021, 13, 1652.	3.3	2
6	Trehalose-deficient <i>Acinetobacter baumannii</i> exhibits reduced virulence by losing capsular polysaccharide and altering membrane integrity. Glycobiology, 2021, 31, 1520-1530.	2.5	5
7	Reduced Infection Efficiency of Phage NCTC 12673 on Non-Motile Campylobacter jejuni Strains Is Related to Oxidative Stress. Viruses, 2021, 13, 1955.	3.3	4
8	Detecting Glucose Fluctuations in the Campylobacter jejuni N-Glycan Structure. ACS Chemical Biology, 2021, 16, 2690-2701.	3.4	2
9	Improving Chicken Responses to Glycoconjugate Vaccination Against Campylobacter jejuni. Frontiers in Microbiology, 2021, 12, 734526.	3.5	15
10	N-glycosylation of the CmeABC multidrug efflux pump is needed for optimal function in Campylobacter jejuni. Glycobiology, 2020, 30, 105-119.	2.5	18
11	The gastrointestinal pathogen Campylobacter jejuni metabolizes sugars with potential help from commensal Bacteroides vulgatus. Communications Biology, 2020, 3, 2.	4.4	26
12	Multidrug Resistant Acinetobacter Isolates Release Resistance Determinants Through Contact-Dependent Killing and Bacteriophage Lysis. Frontiers in Microbiology, 2020, 11, 1918.	3.5	9
13	An atypical lipoteichoic acid from Clostridium perfringens elicits a broadly cross-reactive and protective immune response. Journal of Biological Chemistry, 2020, 295, 9513-9530.	3.4	12
14	Influence of Protein Glycosylation on Campylobacter fetus Physiology. Frontiers in Microbiology, 2020, 11, 1191.	3.5	7
15	Binding of Phage-Encoded FlaGrab to Motile Campylobacter jejuni Flagella Inhibits Growth, Downregulates Energy Metabolism, and Requires Specific Flagellar Glycans. Frontiers in Microbiology, 2020, 11, 397.	3.5	14
16	<i>Campylobacter</i> Abundance in Breastfed Infants and Identification of a New Species in the Global Enterics Multicenter Study. MSphere, 2020, 5, .	2.9	34
17	Characterization of ecotin homologs from Campylobacter rectus and Campylobacter showae. PLoS ONE, 2020, 15, e0244031.	2.5	3
18	New discoveries in bacterial N-glycosylation to expand the synthetic biology toolbox. Current Opinion in Chemical Biology, 2019, 53, 16-24.	6.1	29

CHRISTINE M SZYMANSKI

#	Article	IF	CITATIONS
19	Deoxyinosine and 7-Deaza-2-Deoxyguanosine as Carriers of Genetic Information in the DNA of <i>Campylobacter</i> Viruses. Journal of Virology, 2019, 93, .	3.4	25
20	Cj1388 Is a RidA Homolog and Is Required for Flagella Biosynthesis and/or Function in Campylobacter jejuni. Frontiers in Microbiology, 2019, 10, 2058.	3.5	15
21	Glycosylation Is Vital for Industrial Performance of Hyperactive Cellulases. ACS Sustainable Chemistry and Engineering, 2019, 7, 4792-4800.	6.7	19
22	Bacterial AB5 toxins inhibit the growth of gut bacteria by targeting ganglioside-like glycoconjugates. Nature Communications, 2019, 10, 1390.	12.8	28
23	A platform for glycoengineering a polyvalent pneumococcal bioconjugate vaccine using E. coli as a host. Nature Communications, 2019, 10, 891.	12.8	60
24	Immobilization of Intact Phage and Phage-Derived Proteins for Detection and Biocontrol Purposes. Methods in Molecular Biology, 2019, 1898, 89-105.	0.9	2
25	Draft Genome Sequences of Nine Campylobacter hyointestinalis subsp. lawsonii Strains. Microbiology Resource Announcements, 2018, 7, .	0.6	3
26	Complete Genome Sequence of Acinetobacter radioresistens Strain LH6, a Multidrug-Resistant Bacteriophage-Propagating Strain. Microbiology Resource Announcements, 2018, 7, .	0.6	7
27	Deletion of a single glycosyltransferase in Caldicellulosiruptor bescii eliminates protein glycosylation and growth on crystalline cellulose. Biotechnology for Biofuels, 2018, 11, 259.	6.2	10
28	Phase Variable Expression of a Single Phage Receptor in Campylobacter jejuni NCTC12662 Influences Sensitivity Toward Several Diverse CPS-Dependent Phages. Frontiers in Microbiology, 2018, 9, 82.	3.5	31
29	Transcriptomic Analysis of the Campylobacter jejuni Response to T4-Like Phage NCTC 12673 Infection. Viruses, 2018, 10, 332.	3.3	46
30	Random sorting of Campylobacter jejuni phase variants due to a narrow bottleneck during colonization of broiler chickens. Microbiology (United Kingdom), 2018, 164, 896-907.	1.8	13
31	A conserved DGGK motif is essential for the function of the PglB oligosaccharyltransferase from Campylobacter jejuni. Glycobiology, 2017, 27, 978-989.	2.5	9
32	Discovery of a Glutamine Kinase Required for the Biosynthesis of the <i>O</i> -Methyl Phosphoramidate Modifications Found in the Capsular Polysaccharides of <i>Campylobacter jejuni</i> . Journal of the American Chemical Society, 2017, 139, 9463-9466.	13.7	24
33	Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages. Viruses, 2016, 8, 17.	3.3	37
34	Lâ€fucose influences chemotaxis and biofilm formation in <i>Campylobacter jejuni</i> . Molecular Microbiology, 2016, 101, 575-589.	2.5	64
35	Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine. Scientific Reports, 2016, 6, 26511.	3.3	70
36	Are campylobacters now capable of carboâ€loading?. Molecular Microbiology, 2015, 98, 805-808.	2.5	2

CHRISTINE M SZYMANSKI

#	Article	IF	CITATIONS
37	A Flagellar Glycan-Specific Protein Encoded by Campylobacter Phages Inhibits Host Cell Growth. Viruses, 2015, 7, 6661-6674.	3.3	13
38	Exploring the interactions between bacteriophage-encoded glycan binding proteins and carbohydrates. Current Opinion in Structural Biology, 2015, 34, 69-77.	5.7	30
39	A novel DNA-binding protein fromCampylobacter jejunibacteriophage NCTC12673. FEMS Microbiology Letters, 2015, 362, fnv160.	1.8	2
40	A receptorâ€binding protein of <scp><i>C</i></scp> <i>ampylobacter jejuni</i> bacteriophage <scp>NCTC</scp> 12673 recognizes flagellin glycosylated with acetamidinoâ€modified pseudaminic acid. Molecular Microbiology, 2015, 95, 101-115.	2.5	28
41	A Plant-Produced Bacteriophage Tailspike Protein for the Control of Salmonella. Frontiers in Plant Science, 2015, 6, 1221.	3.6	14
42	Biological Roles of the O-Methyl Phosphoramidate Capsule Modification in Campylobacter jejuni. PLoS ONE, 2014, 9, e87051.	2.5	48
43	Mycobacteriophage cell binding proteins for the capture of mycobacteria. Bacteriophage, 2014, 4, e960346.	1.9	10
44	A suggested classification for two groups of Campylobacter myoviruses. Archives of Virology, 2014, 159, 181-190.	2.1	63
45	Mycobacteriophage lysin-mediated capture of cells for the PCR detection of Mycobacterium avium subspecies paratuberculosis. Analytical Methods, 2014, 6, 5682-5689.	2.7	8
46	Regulation of Flagellar Gene Expression and Assembly. , 2014, , 543-558.		7
47	N-Linked Protein Clycosylation in Campylobacter. , 2014, , 445-469.		4
48	Phage receptor binding protein-based magnetic enrichment method as an aid for real time PCR detection of foodborne bacteria. Analyst, The, 2013, 138, 5619.	3.5	51
49	Generation of Free Oligosaccharides from Bacterial Protein N‣inked Glycosylation Systems. Biopolymers, 2013, 99, 772-783.	2.4	24
50	Gene Function Hypotheses for the Campylobacter jejuni Glycome Generated by a Logic-Based Approach. Journal of Molecular Biology, 2013, 425, 186-197.	4.2	20
51	Bacterial Protein N-Glycosylation: New Perspectives and Applications. Journal of Biological Chemistry, 2013, 288, 6912-6920.	3.4	151
52	N-Glycosylation of Campylobacter jejuni Surface Proteins Promotes Bacterial Fitness. Infection and Immunity, 2013, 81, 1674-1682.	2.2	68
53	Bacteriophage Receptor Binding Protein Based Assays for the Simultaneous Detection of Campylobacter jejuni and Campylobacter coli. PLoS ONE, 2013, 8, e69770.	2.5	45
54	Pentavalent Single-Domain Antibodies Reduce Campylobacter jejuni Motility and Colonization in Chickens. PLoS ONE, 2013, 8, e83928.	2.5	42

#	Article	IF	CITATIONS
55	How a sugary bug gets through the day. Gut Microbes, 2012, 3, 135-144.	9.8	24
56	Surface-immobilization of chromatographically purified bacteriophages for the optimized capture of bacteria. Bacteriophage, 2012, 2, 15-24.	1.9	51
57	Diversity in the Protein N-Glycosylation Pathways Within the Campylobacter Genus. Molecular and Cellular Proteomics, 2012, 11, 1203-1219.	3.8	84
58	Modification of the Campylobacter jejuni N-Linked Glycan by EptC Protein-mediated Addition of Phosphoethanolamine. Journal of Biological Chemistry, 2012, 287, 29384-29396.	3.4	63
59	Quantifying Ligand Binding to Large Protein Complexes Using Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2012, 84, 3867-3870.	6.5	40
60	Bacteriophage based probes for pathogen detection. Analyst, The, 2012, 137, 3405.	3.5	121
61	Phase Variable Expression of Capsular Polysaccharide Modifications Allows Campylobacter jejuni to Avoid Bacteriophage Infection in Chickens. Frontiers in Cellular and Infection Microbiology, 2012, 2, 11.	3.9	87
62	The 30th anniversary of Campylobacter, Helicobacter, and Related Organisms workshops—what have we learned in three decades?. Frontiers in Cellular and Infection Microbiology, 2012, 2, 20.	3.9	7
63	Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst, The, 2011, 136, 4780.	3.5	83
64	<scp>l</scp> -Fucose utilization provides <i>Campylobacter jejuni</i> with a competitive advantage. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7194-7199.	7.1	197
65	Bacteriophage F336 Recognizes the Capsular Phosphoramidate Modification of Campylobacter jejuni NCTC11168. Journal of Bacteriology, 2011, 193, 6742-6749.	2.2	115
66	Genome and Proteome of Campylobacter jejuni Bacteriophage NCTC 12673. Applied and Environmental Microbiology, 2011, 77, 8265-8271.	3.1	61
67	Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection. Biosensors and Bioelectronics, 2010, 26, 131-138.	10.1	113
68	Protein glycosylation in bacteria: sweeter than ever. Nature Reviews Microbiology, 2010, 8, 765-778.	28.6	471
69	Characterization of a Bifunctional Pyranose-Furanose Mutase from Campylobacter jejuni 11168. Journal of Biological Chemistry, 2010, 285, 493-501.	3.4	30
70	<i>Campylobacter jejuni</i> free oligosaccharides: Function and fate. Virulence, 2010, 1, 546-550.	4.4	15
71	Biosynthesis and assembly of capsular polysaccharides. , 2010, , 351-373.		10
72	Characterization of Lipid-Linked Oligosaccharides by Mass Spectrometry. Methods in Molecular Biology, 2010, 600, 187-197.	0.9	4

#	Article	IF	CITATIONS
73	N-Linked Protein Glycosylation in a Bacterial System. Methods in Molecular Biology, 2010, 600, 227-243.	0.9	27
74	Orally Administered P22 Phage Tailspike Protein Reduces Salmonella Colonization in Chickens: Prospects of a Novel Therapy against Bacterial Infections. PLoS ONE, 2010, 5, e13904.	2.5	95
75	Study of free oligosaccharides derived from the bacterial <i>N</i> -glycosylation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15019-15024.	7.1	58
76	Identification and Quantification of Glycoproteins Using Ion-Pairing Normal-phase Liquid Chromatography and Mass Spectrometry. Molecular and Cellular Proteomics, 2009, 8, 2170-2185.	3.8	70
77	Analysis of Bacterial Lipid-Linked Oligosaccharide Intermediates Using Porous Graphitic Carbon Liquid Chromatography-Electrospray Ionization Mass Spectrometry: Heterogeneity in the Polyisoprenyl Carrier Revealed. Analytical Chemistry, 2009, 81, 8472-8478.	6.5	16
78	Campylobacter sugars sticking out. Trends in Microbiology, 2008, 16, 428-435.	7.7	120
79	Affinity-Capture Tandem Mass Spectrometric Characterization of Polyprenyl-Linked Oligosaccharides: Tool to Study Protein N-Glycosylation Pathways. Analytical Chemistry, 2008, 80, 5468-5475.	6.5	20
80	<i>Campylobacter jejuni</i> Biofilms Up-Regulated in the Absence of the Stringent Response Utilize a Calcofluor White-Reactive Polysaccharide. Journal of Bacteriology, 2008, 190, 1097-1107.	2.2	61
81	Commonality and Biosynthesis of the O-Methyl Phosphoramidate Capsule Modification in Campylobacter jejuni. Journal of Biological Chemistry, 2007, 282, 28566-28576.	3.4	86
82	HR-MAS NMR studies of 15N-labeled cells confirm the structure of the O-methyl phosphoramidate CPS modification in Campylobacter jejuni and provide insight into its biosynthesis. Canadian Journal of Chemistry, 2006, 84, 676-684.	1.1	9
83	Mass Spectrometry-Based Glycomics Strategy for Exploring N-Linked Glycosylation in Eukaryotes and Bacteria. Analytical Chemistry, 2006, 78, 6081-6087.	6.5	88
84	The HS:19 serostrain of Campylobacter jejuni has a hyaluronic acid-type capsular polysaccharide with a nonstoichiometric sorbose branch and O-methyl phosphoramidate group. FEBS Journal, 2006, 273, 3975-3989.	4.7	38
85	In vivo determination of Neisseria meningitidis serogroup A capsular polysaccharide by whole cell high-resolution magic angle spinning NMR spectroscopy. Carbohydrate Research, 2006, 341, 557-562.	2.3	34
86	Proteomic Analysis of Campylobacter jejuni 11168 Biofilms Reveals a Role for the Motility Complex in Biofilm Formation. Journal of Bacteriology, 2006, 188, 4312-4320.	2.2	248
87	Biosynthesis of the N-Linked Glycan in Campylobacter jejuni and Addition onto Protein through Block Transfer. Journal of Bacteriology, 2006, 188, 2427-2434.	2.2	126
88	Campylobacter. , 2006, , 63-90.		2
89	Protein glycosylation in bacterial mucosal pathogens. Nature Reviews Microbiology, 2005, 3, 225-237.	28.6	380
90	The HS:1 serostrain of Campylobacter jejuni has a complex teichoic acid-like capsular polysaccharide with nonstoichiometric fructofuranose branches and O-methyl phosphoramidate groups. FEBS Journal, 2005, 272, 4407-4422.	4.7	59

#	Article	IF	CITATIONS
91	A Single Bifunctional UDP-GlcNAc/Glc 4-Epimerase Supports the Synthesis of Three Cell Surface Glycoconjugates in Campylobacter jejuni. Journal of Biological Chemistry, 2005, 280, 4792-4802.	3.4	117
92	Genome-wide Expression Analyses of Campylobacter jejuni NCTC11168 Reveals Coordinate Regulation of Motility and Virulence by flhA. Journal of Biological Chemistry, 2004, 279, 20327-20338.	3.4	190
93	N-Linked Protein Glycosylation Is Required for Full Competence in Campylobacter jejuni 81-176. Journal of Bacteriology, 2004, 186, 6508-6514.	2.2	110
94	Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Molecular Microbiology, 2004, 55, 90-103.	2.5	162
95	Detection of Conserved N-Linked Glycans and Phase-variable Lipooligosaccharides and Capsules from Campylobacter Cells by Mass Spectrometry and High Resolution Magic Angle Spinning NMR Spectroscopy. Journal of Biological Chemistry, 2003, 278, 24509-24520.	3.4	180
96	Campylobacter – a tale of two protein glycosylation systems. Trends in Microbiology, 2003, 11, 233-238.	7.7	166
97	Phase Variation of Campylobacter jejuni 81-176 Lipooligosaccharide Affects Ganglioside Mimicry and Invasiveness In Vitro. Infection and Immunity, 2002, 70, 787-793.	2.2	195
98	Structure of the N-Linked Glycan Present on Multiple Glycoproteins in the Gram-negative Bacterium, Campylobacter jejuni. Journal of Biological Chemistry, 2002, 277, 42530-42539.	3.4	380
99	Campylobacter Protein Glycosylation Affects Host Cell Interactions. Infection and Immunity, 2002, 70, 2242-2244.	2.2	220
100	The structures of the lipooligosaccharide and capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. FEBS Journal, 2002, 269, 5119-5136.	0.2	150
101	A phase-variable capsule is involved in virulence of Campylobacter jejuni 81-176. Molecular Microbiology, 2001, 40, 769-777.	2.5	270
102	Evidence for a system of general protein glycosylation in Campylobacter jejuni. Molecular Microbiology, 1999, 32, 1022-1030.	2.5	373
103	Peptide amidation in an invertebrate: Purification, characterization, and inhibition of peptidylglycine ?-hydroxylating monooxygenase from the heads of honeybees (apis mellifera). Archives of Insect Biochemistry and Physiology, 1994, 26, 27-48.	1.5	18
104	Survival Strategies of <i>Campylobacter jejuni</i> : Stress Responses, the Viable but Nonculturable State, and Biofilms. , 0, , 571-590.		12
105	Iron Metabolism, Transport, and Regulation. , 0, , 591-610.		16
106	<i>Campylobacter jejuni</i> Capsular Polysaccharide. , 0, , 505-521.		3
107	<i>O</i> -Linked Flagellar Glycosylation in <i>Campylobacter</i> ., 0, , 471-481.		4

108 <i>Campylobacter</i> Metabolomics. , 0, , 523-542.