Géraldine Féraud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6445793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic Spectra of the Protonated Indole Chromophore in the Gas Phase. Journal of Physical Chemistry A, 2013, 117, 4420-4427.	1.1	70
2	Ion irradiation of carbonaceous interstellar analogues. Astronomy and Astrophysics, 2011, 529, A146.	2.1	69
3	Nanostructuration of carbonaceous dust as seen through the positions of the 6.2 and 7.7 <i>μ</i> m AIBs. Astronomy and Astrophysics, 2012, 548, A40.	2.1	62
4	New Method for Double-Resonance Spectroscopy in a Cold Quadrupole Ion Trap and Its Application to UV–UV Hole-Burning Spectroscopy of Protonated Adenine Dimer. Journal of Physical Chemistry Letters, 2014, 5, 2760-2764.	2.1	62
5	Excited states of protonated DNA/RNA bases. Physical Chemistry Chemical Physics, 2014, 16, 10643-10650.	1.3	60
6	Photofragmentation spectroscopy of cold protonated aromatic amines in the gas phase. Physical Chemistry Chemical Physics, 2014, 16, 5250.	1.3	47
7	Development of Ultraviolet–Ultraviolet Hole-Burning Spectroscopy for Cold Gas-Phase Ions. Journal of Physical Chemistry Letters, 2014, 5, 1236-1240.	2.1	43
8	X-ray photodesorption from water ice in protoplanetary disks and X-ray-dominated regions. Nature Astronomy, 2018, 2, 796-801.	4.2	38
9	Excited State Dynamics of Protonated Phenylalanine and Tyrosine: Photo-Induced Reactions Following Electronic Excitation. Journal of Physical Chemistry A, 2015, 119, 5914-5924.	1.1	36
10	Spectrally-resolved UV photodesorption of CH ₄ in pure and layered ices. Astronomy and Astrophysics, 2017, 603, A61.	2.1	35
11	A conformational study of protonated noradrenaline by UV–UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method. Physical Chemistry Chemical Physics, 2017, 19, 10777-10785.	1.3	27
12	Unusual Behavior in the First Excited State Lifetime of Catechol. Journal of Physical Chemistry Letters, 2013, 4, 3819-3823.	2.1	23
13	Excited States of Proton-Bound DNA/RNA Base Homodimers: Pyrimidines. Journal of Physical Chemistry B, 2015, 119, 2219-2228.	1.2	21
14	UV spectroscopy of cold ions as a probe of the protonation site. Physical Chemistry Chemical Physics, 2015, 17, 25755-25760.	1.3	20
15	Effect of Ag ⁺ on the Excited-State Properties of a Gas-Phase (Cytosine) ₂ Ag ⁺ Complex: Electronic Transition and Estimated Lifetime. Journal of Physical Chemistry Letters, 2014, 5, 2295-2301.	2.1	19
16	Accurate dissociation energies of two isomers of the 1-naphtholâ‹cyclopropane complex. Journal of Chemical Physics, 2016, 145, 164304.	1.2	19
17	Non-radiative processes in protonated diazines, pyrimidine bases and an aromatic azine. Physical Chemistry Chemical Physics, 2016, 18, 20126-20134.	1.3	17
18	Photodissociation UV–Vis Spectra of Cold Protonated Azobenzene and 4-(Dimethylamino)azobenzene and Their Benzenediazonium Cation Fragment. Journal of Physical Chemistry A, 2016, 120, 3897-3905.	1.1	16

#	Article	IF	CITATIONS
19	Communication: UV photoionization of cytosine catalyzed by Ag+. Journal of Chemical Physics, 2015, 143, 041103.	1.2	15
20	Photodissociation Electronic Spectra of Cold Protonated Quinoline and Isoquinoline in the Gas Phase. Journal of Physical Chemistry A, 2017, 121, 2580-2587.	1.1	14
21	Electronic Spectroscopy of PAHs. EAS Publications Series, 2011, 46, 355-371.	0.3	13
22	Photo-fragmentation spectroscopy of benzylium and 1-phenylethyl cations. Journal of Chemical Physics, 2014, 140, 024302.	1.2	13
23	UV photodissociation spectroscopy of cryogenically cooled gas phase host–guest complex ions of crown ethers. Physical Chemistry Chemical Physics, 2015, 17, 25925-25934.	1.3	11
24	Complex organic molecules in protoplanetary disks: X-ray photodesorption from methanol-containing ices. Astronomy and Astrophysics, 2021, 647, A35.	2.1	11
25	Vacuum Ultraviolet Photodesorption and Photofragmentation of Formaldehyde-Containing Ices. ACS Earth and Space Chemistry, 2019, 3, 1135-1150.	1.2	10
26	Photodesorption of Acetonitrile CH ₃ CN in UV-irradiated Regions of the Interstellar Medium: Experimental Evidence. Astrophysical Journal, 2021, 922, 213.	1.6	10
27	Mechanism of Indirect Photon-Induced Desorption at the Water Ice Surface. Physical Review Letters, 2021, 126, 156001.	2.9	9
28	Intramolecular Processes Revealed Using UV-Laser-Induced IR-Fluorescence: A New Perspective on the "Channel Three―of Benzene. Journal of Physical Chemistry Letters, 2014, 5, 1083-1090.	2.1	8
29	The efficient photodesorption of nitric oxide (NO) ices. Astronomy and Astrophysics, 2017, 606, L9.	2.1	8
30	Complex organic molecules in protoplanetary disks: X-ray photodesorption from methanol-containing ices. Astronomy and Astrophysics, 2021, 647, A36.	2.1	8
31	Anion production in high-velocity cluster–atom collisions; the electron capture process revisited. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 015201.	0.6	7
32	Measuring Intermolecular Binding Energies by Laser Spectroscopy. Chimia, 2017, 71, 7.	0.3	7
33	Influence of the N atom position on the excited state photodynamics of protonated azaindole. Physical Chemistry Chemical Physics, 2020, 22, 27280-27289.	1.3	7
34	Desorption of neutrals, cations, and anions from core-excited amorphous solid water. Journal of Chemical Physics, 2020, 152, 054711.	1.2	7
35	Detection of atomic and molecular mega-electron-volt projectiles using an x-ray charged coupled device camera. Review of Scientific Instruments, 2011, 82, 103301.	0.6	6
36	Visible Photodissociation Spectra of the 1- and 2-Methylnaphthalene Cations: Laser Spectroscopy and Theoretical Simulations. Journal of Physical Chemistry A, 2013, 117, 13664-13672.	1.1	6

Géraldine Féraud

#	Article	IF	CITATIONS
37	Excited-State Dynamics of Protonated Aromatic Amino Acids. Physical Chemistry in Action, 2013, , 155-180.	0.1	6
38	Vacuum-UV Photodesorption from Compact Amorphous Solid Water: Photon Energy Dependence, Isotopic and Temperature Effects. ACS Earth and Space Chemistry, 2022, 6, 100-115.	1.2	6
39	Communication: Identification of daughter ions through their electronic spectroscopy at low temperature. Journal of Chemical Physics, 2014, 141, 131101.	1.2	5
40	lon-pair dissociation of highly excited carbon clusters: Size and charge effects. Physical Review A, 2017, 95, .	1.0	4
41	X-Ray induced desorption and photochemistry in CO ice. Physical Chemistry Chemical Physics, 2021, 23, 15965-15979.	1.3	4
42	Electronic spectra of cationic PAH and PAH clusters. EAS Publications Series, 2012, 58, 373-378.	0.3	3
43	Infrared emission from photo-excited gaseous benzene: detection with a new home-made spectrometer. EAS Publications Series, 2012, 58, 379-384.	0.3	2
44	Laboratory Spectroscopy of PAHs. Proceedings of the International Astronomical Union, 2013, 9, 247-257.	0.0	2
45	Nanostructuration of polyaromatic analogues of the carbonaceous dust. EAS Publications Series, 2012, 58, 399-404.	0.3	1
46	Effects of cosmic rays on hydrocarbon interstellar dust. EAS Publications Series, 2012, 58, 395-398.	0.3	1
47	Cold ion UV photofragmentation spectroscopy and dynamics (Invited). , 2014, , .		1
48	Laboratory Analogues of the Carbonaceous Dust: Synthesis of Soot-like Materials and their Properties. Proceedings of the International Astronomical Union, 2012, 10, 717-719.	0.0	0
49	Negative ion productions in high velocity collision between small carbon clusters and Helium atom target. Journal of Physics: Conference Series, 2012, 388, 102036.	0.3	0
50	lon-pair dissociation of highly excited carbon clusters, size and charge effects. Journal of Physics: Conference Series, 2015, 635, 032085.	0.3	0