Konstantin Kudeyarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6445017/publications.pdf

Version: 2024-02-01

		1684188	1588992	
15	63	5	8	
papers	citations	h-index	g-index	
15	15	15	23	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	$48\hat{a}$ em-long room-temperature cavities in vertical and horizontal orientations for Sr optical clock. Applied Optics, 2021, 60, 9151.	1.8	7
2	Comparison of Three Ultrastable Lasers with a Femtosecond Frequency Comb. JETP Letters, 2021, 114, 243-249.	1.4	5
3	Compact High-Finesse ULE Cavities for Laser Frequency Stabilization. Bulletin of the Lebedev Physics Institute, 2021, 48, 295-300.	0.6	3
4	Compensation of residual amplitude modulation fluctuations in an optoelectronic system for laser radiation frequency stabilisation. Quantum Electronics, 2020, 50, 590-594.	1.0	4
5	Ultra-stable silicon cavities for fundamental researches and applications. AIP Conference Proceedings, 2020, , .	0.4	1
6	Long ULE Cavities with Relative Fractional Frequency Drift Rate below 5 × 10–16/s for Laser Frequency Stabilization. Bulletin of the Lebedev Physics Institute, 2020, 47, 257-261.	0.6	3
7	Optical properties of a silicon ultrastable cavity with crystalline mirrors. Journal of Physics: Conference Series, 2020, 1692, 012021.	0.4	1
8	Frequency transfer via an ultra-stable free-space link. Quantum Electronics, 2020, 50, 267-271.	1.0	4
9	Optical frequency transfer via an ultra-stable open-air short link. Journal of Physics: Conference Series, 2020, 1692, 012020.	0.4	1
10	Temperature drift contribution to frequency instability of silicon Fabry–Perot cavities. Quantum Electronics, 2019, 49, 424-428.	1.0	5
11	Laser systems stabilized to cryogenic silicon cavities for precision measurements. EPJ Web of Conferences, 2019, 220, 03020.	0.3	1
12	On the thermal noise limit of ultrastable optical cavities. Quantum Electronics, 2018, 48, 425-430.	1.0	12
13	2.8 km fiber link with phase noise compensation for transportable Yb+ optical clock characterization. Laser Physics, 2018, 28, 105103.	1.2	8
14	Frequency standards based on ultracold atoms in tests of general relativity, navigation and gravimetry. Quantum Electronics, 2017, 47, 394-399.	1.0	0
15	Short-haul fibre-optic communication link with a phase noise compensation system for optical frequency signal transmission. Quantum Electronics, 2017, 47, 794-797.	1.0	8